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ABSTRACT 
 
Adaptive pixel-wise Gaussian mixture model (GMM) is a 
popular method to model dynamic scenes viewed by a fixed 
camera. However, it is not a trivial problem for GMM to 
capture the accurate mean and variance of a complex pixel. 
This paper presents a two-layer Gaussian mixture model 
(TLGMM) of dynamic scenes for moving object detection. 
The first layer, namely real model, deals with gradually 
changing pixels specially; the second layer, called on-ready 
model, focuses on those pixels changing significantly and 
irregularly. TLGMM can represent dynamic scenes more 
accurately and effectively. Additionally, a long term and a 
short term variance are taken into account to alleviate the 
transparent problems faced by pixel-based methods.  
 
Index Terms— Gaussian mixture model, background sub-
traction, moving object detection 
 

1. INTRODUCTION 
 
Background subtraction is a common technology used in 
some vision applications, such as surveillance, where the 
camera is mechanically fixed. A crucial step of this 
approach is to model background accurately and robustly.  

The statistical method of modeling background involves 
calculating the likelihood ( | )bP x Θ of each pixel. A simple 
likelihood may be assumed to consist of a Gaussian 
distribution [1] [2]. The single Gaussian model (SGM) is 
suitable for handling gradual illumination changes in a 
scene. Unfortunately, SGM fails to deal with complex real 
scenes. In real world, even a pure background pixel may 
exhibit tremendous changes of intensity or color caused by 
sudden illumination change, periodic motion such as 
rippling water, swaying vegetation, flicking flag, raining, 
and even jittering sensors, etc. These situations imply a bi-
modal or multi-modal of a pixel. Additionally, a pixel is 
usually occupied alternately by both background and 
foreground randomly. This fact appreciates the need of a 
two-layer model to apprehend a dynamic scene. 

Previous work suggested the efficiency of dealing with 
these complicated situations mentioned above by Gaussian 
mixture model (GMM), which is followed in this paper. 
Stauffer et al. [3] modeled pixel intensity by a mixture of 
Gaussian distributions to account for the multimodality of 
background. Zivkovic [4] extended the work of Stauffer by 
adaptively determining the number of models combined in 
the likelihood. Lee et al. [5] proposed an adaptive learning 
rate schedule for each Gaussian to improve the convergence 
speed. Porikli et al. [6] and Martel-Brisson et al. [7] 
proposed methods for modeling casting shadow as well as 
background with GMM. Moreover, Elgammal et al. [8] 
proposed non-parametric estimation method for pixel-wise 
background modeling. They used kernel density estimation 
(KDE), as a generalization of Gaussian mixture model, to 
establish membership. 

However, the traditional background subtraction based 
on pixel-wise GMM is subject to two limitations.  Firstly, 
GMM commonly fails to obtain the accurate mean and 
variance of a complicated pixel, due to the uniform 
mechanism of update, i.e., the foreground and background 
pixels are treated by one unified model. Secondly, 
conventional approach to moving object detection is hard to 
treat with the situation when foreground and background 
possess very similar intensity or color, resulting in great 
false negative (holes in detected regions). 

We proposed a new mechanism of two-layer Gaussian 
mixture model. This scheme endows the model with the 
ability to learn the parameters of background model 
effectively and accurately. Additionally, we address the 
transparent problem (holes) with the usage of temporal 
information. A long term variance and a short term one of a 
pixel is taken into account to reduce false negative. 
 

2. TWO-LAYER GAUSSIAN MIXTURE MODEL 
 
In this section, a novel mechanism of two-layer Gaussian 
mixture model is presented for modeling dynamic scenes. 
One layer of the model, namely real model, is designed to 
adapt with gradually changing scenes and to remember the 
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learned model for a reasonably long period of time. The 
other layer, called on-ready model, is designated to deal 
with new pixel values not included in the real model.  

These two models consider pixels in a different way, 
corresponding to background layer and foreground layer of 
a scene, respectively. The clearly separated framework of 
TLGMM exhibits wonderful property to acquire the correct 
values of mean and variance. Stability of real model and 
swift response of on-ready model give rise to the 
significantly improved adaptability to dynamic scenes. The 
architecture of TLGMM and the interaction between real 
model and on-ready model are described in details in the 
succeeding sections. Formulas are presented in one 
dimension for simplicity, while the extension to multiple 
dimensions is straightforward. 
 
2.1. Real Model 
 
The pixel-based Gaussian mixture model of background is 
a weighted combination of several Gaussian functions,                     
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where ( | )bP x Θ  is the probability of a certain pixel of 
background having intensity of x at time t, the subscript t is 
omitted for simplicity without confusion. 2( | , )i i ip x μ σ is a 
Gaussian function with mean iμ  and variance 2

iσ , and iω  is 
the weight of the i-th Gaussian. The summation of all 
weights equals 1. 1N  is the number of Gaussians. The 
model can be denoted as 2

1{ , , , (1, , )}b i i i i Nω μ σΘ = = . 
The algorithm starts with a coarse decision to learn the 

exact parameters. When there are not sufficient priors about 
moving objects, we have to set a global threshold thK of 
probability to check if a pixel belongs to background or not. 
For GMM, the decision rule is simplified as that, if a pixel 
matches anyone of the first B Gaussians, it is classified as 
background. B is calculated in eq. (5), The match is defined 
as the value of a pixel falling in the neighborhood of a mean, 
i.e., 1| | 2.5 , (1, , )ix i Nμ σ− < = . 

The matching data are used to update the real model 
with a K-means estimation of EM algorithm. Every new 
value of the pixel is checked against the real model until a 
match is found. If there is no match, the pixel value will be 
treated by on-ready model discussed in the succeeding 
section. The mean and variance of the matching model are 
updated as follows, 
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where x  is the current value of a pixel; 2
maxσ and 2

minσ  are 
the maximum and minimum limitation of variance, 
respectively; 2( | , )i i i iP xβ β μ σ= ⋅ , where 2( | , )i i iP x μ σ  
is a Gaussian function, and β is between 0 and 1. β  can be 

set large enough to enable the model to adapt with the rapid 
and gradual changes of the scene and the learned parameters 
are more likely the real value. The choice of parameter iβ  
in eq. (2) makes the model to reach the current value of a 
pixel quickly and smoothly. The means and variances of 
other un-matching models remain unchanged for the 
moment. 

Researchers in literatures mostly afford a large 
initialized value of variance and make it decreasing slowly 
and almost continuously in common GMM. Stauffer et al. 
[3] introduced the variational attenuation parameter in their 
update scheme, which implies that the Gaussian model is 
more difficult to expand than to shrink, and theoretically 
leads to the variance converging to a very small value even 
close to zero eventually. This treatment obviously loses the 
genuine variance and will cause more false positive. An 
effective way to attain the correct variance is to employ a 
constant between 0 and 1 as the attenuation parameter. On 
the other hand, since complex pixel usually changes 
significantly, the variance of a model is prone to expand 
wide excessively, resulting in that one dominant Gaussian 
suppresses all others, which will produce more false 
negative for moving object detection. To avoid these 
problems, the variance should be bounded, as in eq. (3), 
between reasonable mini-max limitations. 

The weights are the probability of components in the 
mixture of Gaussians. We do not expect them changing too 
quickly to hold the learned model for a reasonably long 
period of time. A small parameter α  is appropriate for this 
purpose, 

1(1 ) (1, , )i i iM i Nω α ω α← − + =       (4) 
where iM  is 1 for the matching component and 0 for the 
others. The summation of all weights holds 1 exactly after 
update and they are not necessary to be renormalized. It is 
not difficult to know, 2th i iK Cω πσ≈ , where C  is 
between 0 and 1. Hereby, the components of the model are 
aligned in descending order according to i iω σ . The first 
B components are treated as effective background states,  
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A larger 1T  involves more components of real model 
accounting for the background. 
 
2.2. On-ready Model 
 
Similarly, another Gaussian mixture model accounting for 
foreground is constructed as follows, 
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Fig.1. The learning process of GMM (left column) and TLGMM (right column). Red and blue points are 
synthesized sample data (red indicates pixel misclassified as foreground), and the color curves denote the means of 
models (up row); the thin blue curves are the combination of 4 Gaussians (down row). 

In fact, since the foreground is more complicated, it may be 
impractical to represent various moving objects with GMM 
accurately. On-ready model is not designated to address this 
issue exactly, but aims at capturing the most probability of a 
pixel state belonging to background while not contained in 
the existing real model.  

The mean and variance are updated the same way as real 
model. While the weights update as follows, 

2(1 ) , (1, , )j j j j jM j Nω α ω α← − ⋅ + ⋅ =       (7) 
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2( | , )j j j jt t P x μ σ← +                         (9) 

jM  is 1 for the matching component and 0 for others. jt  
accounts the appearance times regarding to 2( | , )j jP x μ σ . 

2T  is mainly in charge of the duration when a pixel is 
absorbed by background. A large value of 2T is suitable for 
scenes containing slowly moving objects; a small 2T is 
appropriate for adapting with dynamic scene as fast as 
possible. When 1j thω > , 1th is a threshold between 0 and 1, 
an exchange is triggered between real model and on-ready 
model. The first component of real model is replaced by this 
newly confirmed background state, and the corresponding 
component of on-ready model is reinitialized.  
 
3. OBJECT DETECTION WITH TEMPORAL CUES 

 
A significant disadvantage of background subtraction based 
upon pixel-wise model is that, when the color of moving 
objects is close to or even falls in the 2.5σ  interval of the 
mean, they will be undoubtedly classified as background. It 
will cause great false negative especially when the variance 
is large, unfortunately, which is the case of dynamic scene.  

Temporal information may provide a compensatory 
approach to distinguish similar pixels from background. The 
variance of a complex pixel usually turns small when it is 
occupied by moving objects. Thereby, a long term variance 
model and a short term one for every pixel are established 
and updated as follows,  
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where 2
lσ  and 2

sσ  are the long term variance and short 
term one of a pixel, respectively; Their corresponding 
update parameters lβ  and sβ  are between 0 and 1, 

l sβ β< , ' 0.1l lβ β= ; 2 2
1( )t t tx xσ −= −  is the variance of 

consecutive frames. When x is classified as background, 
the long term variance 2

lσ updates with a suitable lβ , 
otherwise it is updated by a smaller parameter to adapt with 
the situation where a moving object stops for a long interval.  

A normalized difference between long term and short 
term variance are calculated, 
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For those pixels incorrectly classified as background by 
GMM, if they satisfy 2

2d thσ > , they will be drawn back to 
foreground, which will substantially reduce false negative. 
 

4. EXPERIMENTAL RESULTS 
 
Experiments were conducted on both synthesized data and 
real video sequences to evaluate the performance of the 
proposed method. Fig.1 shows the learning processes of 
TLGMM on synthesized data, compared with GMM. The 
pixel intensity of the first 150 frames changed slightly and  
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Fig.2. The frames 39 (A) and 1161 (D) of a video sequence; 
the raw results (not using morphology) obtained by GMM, 
(B) and (E); TLGMM, (C) and (F). 
 
gradually. TLGMM tracked the correct mean successfully at 
this stage, while GMM lost the genuine value. From the 
frame 151, two Gaussian distributions, (110,100)N  
and (160, 200)N , simultaneously appeared. After a desired 
interval (flexibly controlled by 2T ), TLGMM jumped to the 
proper values and kept maintaining  them smoothly; while 
the standard GMM deviated from the true values again, 
resulting in false positive (indicated by red points).  

Two sequences of outdoor scene were tested. The first 
sequence captures a dynamic scene containing spouting 
fountains, swaying trees and flicking flags. The fountains 
ceased in the middle of the sequence and waked at the frame 
1158. The raw results are shown in Fig.2. The up row 
suggests that TLGMM can model dynamic scenes more 
accurately than GMM. The second row indicates that 
TLGMM can hold the learned model for a reasonably long 
interval. This property may be in favor of treating non-
strictly periodic motions, such as casting shadows.   

The well-known ‘WavingTrees’ sequence is tested to 
demonstrate the effectiveness of temporal cue. The results 
are shown in Fig.3. Large holes in the chest of the man are 
filled substantially, Fig.3 (D). On the other hand, we noted 
that the temporal cue is restrictedly suitable for slowly 
moving objects. 
 

5. CONCLUSIONS 
 
GMM has become a standard method dealing with 
complicated dynamic scenes, but it is not an effortless issue 
to attain the accurate mean and variance of a complex pixel. 
In this paper, we proposed a novel mechanism of two-layer 
GMM accounting for dynamic scene. The proposed method 
can achieve accurate background models, significantly 
improving the performance on moving object detection. 
Additionally, temporal information is considered to solve 
the transparent problem of pixel-based methods. 
Experiments on synthesized data and real video illustrate the 
good performance of the proposed method. 

Fig.3. (A) a frame of ‘WavingTrees’ sequence; the raw 
results detected by (B) GMM, (C) TLGMM, and (D) 
TLGMM with temporal information. 
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