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ABSTRACT
A novel method for recognizing 3D objects in an occluded,
cluttered and noisy 2.5D scene, is presented. A ray-triangle
intersection algorithm is used to compute distances between a
circular sector that does not belong to the object and a triangu-
lated surface. Firstly, for each sector’s point its distance from
the object is calculated and stored in a distance map. Sec-
ondly, a 2D histogram that counts the distance map’s points
whose corresponding distance falls within its distance bins,
is formed. Then, the percentages of the bin points that fall
within each bin are calculated forming the final descriptor
vector. The same procedure is followed for the 2.5D scene.
The number of the extracted descriptor vectors is independent
to the number of the object’s or scene’s vertices. Experiments
proved that the proposed method is fast, robust to noise, oc-
clusion and clutter.

Index Terms— Object recognition, Ray tracing, Feature
extraction

1. INTRODUCTION

In the recent years, significant progress has been made to-
ward the recognition of free-form 3D objects. The aim of ob-
ject recognition systems is to correctly identify an object in a
scene of objects in the presence of noise, clutter and occlusion
and to estimate its position and orientation (pose estimation).
Several methods have been implemented so far to deal with
3D object recognition. Algorithms that extract local descrip-
tors, such as surface curvatures [2], are proven to be unsta-
ble and sensitive to noise [4]. Moreover, the method in [5],
which is based on point signatures, is unstable when faced
with noisy data, and sensitive to surface sampling [4]. The
spin image method, proposed by Johnson and Hebert [3], is
vulnerable to sampling and resolution (level-of-detail) of the
models [4]. In object-centered methods [3, 4] the extracted
descriptors don’t depend on the possible views, however the
total number of the extracted descriptors does depend on the
number of vertices of the model. Thus, the total time needed
for the extraction and the comparison of the descriptors is
high. Spin image [3] is applied to every vertex, therefore the
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number of the descriptors increases as the number of vertices
does. When the number of descriptors is compressed, using
Principal Component Analysis (PCA), the average recogni-
tion rate decreases significantly (almost 10%). Spin images
have influenced many other researchers after this paper was
published. Some papers have copied the idea of spin im-
ages and used them in the exact same way, but they have
performed some other post-processing or matching methods,
like in [7, 8]. Others have created different descriptors but in
a somehow similar way [9, 10].
In this paper a novel method is presented that can be char-

acterized as viewer-centered since the descriptors differ each
time a different view of the surface is taken into account.
However, the total number of the extracted descriptors is sig-
nificantly less than those extracted when object-centered meth-
ods are applied. The presented method is based on the extrac-
tion of distance maps that characterize the local topology of a
surface. The model descriptors are extracted from 3D triangu-
lated objects, while the scene descriptors are extracted from a
2.5D triangulated surface. The distance maps are created us-
ing ray-triangle intersection algorithms, where distances be-
tween a circular sector of points (which express the origins
of oriented rays) lying away from the surface, and the trian-
gulated surface are computed. These distances, per sector,
are arranged in ascending order, and a 2D histogram is cre-
ated which expresses the number of sector points within each
distance bin. From the 2D histogram a descriptor vector is
formed as the normalized percentage of the number of each
bin’s points to the total number of the sector’s points. By do-
ing so, the number of the extracted descriptors is independent
to the number of the vertices an object or a scene contains,
thus the number of the descriptors for a 3D object, at different
levels-of-detail, remains the same, in contrast to the methods
presented in [3, 4]. In this way, simpler and faster comparison
of the descriptors is achieved.
The presented algorithm is semi-automatic meaning that

there is a need for user’s intervention during the parametriza-
tion of the scene, in the sense that the user defines the bound-
aries of the grid to be used later for the extraction of scene’s
descriptors. However, when the object recognition task takes
place in a specified place and the recognition system is adapted
in a fixed position, this procedure needs to be done only once.
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Fig. 1. Illustration of distance map computation for model
(a),(b) and scene (c),(d).

The rest of this paper is organized as follows: In Section
2 the algorithm for the extraction of the distance map and the
creation of the descriptor vector for both the scene and the
models, is presented. Section 3 describes the object recogni-
tion procedure. Experimental results are presented in Section
4. Finally, the conclusions are drawn in Section 5.

2. PROPOSED METHOD

In this section the proposed procedure, from the creation of
the distance map for the 3D objects and the 2.5D scene, up to
the final descriptor vector extraction, is explained.

2.1. Extraction of 3D object’s distance map

Let M be a triangulated 3D object. Firstly, M is rotated to
its physical position in the space. Then, a bounding cylindri-
cal grid is created around the object, so that its z-axis coin-
cides to M ’s z-axis. The parametrization parameters of the
bounding cylindrical grid are defined as: h ∈ {k · i; i =
0, 1, 2, ..., H/k}, ω ∈ {b· j; j = 0, 1, 2, ..., 360◦/b}, �H/k� =
H/k (Fig. 1 (a)). The height parameter h varies on z-axis and
the angle parameter ω varies on the xy plane. k and b are the
height and the angle grid intervals, respectively. Value ω = 0
corresponds to x-axis. A cylindrical grid point is defined as
P hω = [ρ · cos(ω), ρ · sin(ω), h]T , where ρ is the cylinder’s
radius. Then, a circular sector S with radius R is created us-
ing the parametrization variables r, ψ, where r ∈ {c · i; i =

0, 1, 2, ..., R/c}, ψ ∈ {f · j; j = 0, 1, 2, ..., 360◦/f} and
�R/c� = R/c. c is the radius interval and f is the angle inter-
val. The parameters r, ψ define each point on S. The centered
at P hω , sector Shω (Fig.1 (a),(b)) is given by the equation:

Shω = Rz(−θ)Ry(−(π/2 − φ))S + P hω (1)

whereRz andRy are the rotation matrices about the y and z
axis, respectively. Each point shωrψ

∈ Shω is the origin of an
oriented ray with direction υω, where υω = [−cos(ω), −
sin(ω), 0]T . θ(longitude) and φ(latitude) in (1) are the
spherical coordinates of υω (Fig. 1 (b)).
Using the ray-triangle algorithm described in [1], the dis-

tance dhωrψ
between shωrψ

and the triangulated surface of
M is computed. It should be noted that when the ray does not
intersect any triangle the distance is set to “−1”. If the ray in-
tersectsM more than once, the smallest distance is kept. The
point shωrψ

for which dhωrψ
is minimum, is denoted as s0hω

and it is stored for the sector Shω , as well as its correspond-
ing distance d0hω

(Fig. 1 (b)). Having as input s0hω
, d0hω

and υω , a ray that intersects the 3D object’s surface at point
JMhω

is defined (Fig. 1 (b)). JMhω
is given by the equation:

JMhω
= υω · d0hω

+ s0hω
(2)

The computed distances for all shωrψ
are used to extract a

distance map per Shω , where a distance map point is defined
as Φhωrψ

= [r · cos(ψ), r · sin(ψ), dhωrψ
− d0hω

]T . The
number of the distance maps per object equals to the total
number of P hω . Distance maps for grid points of all models
are created and stored (off-line) in a model library. The maxi-
mum distance (dhωrψ

− d0hω
) of distance maps of all models

is defined as Dmax.

2.2. Extraction of scene’s distance map

Let us assume a synthetic 2.5D scene that simulates the re-
constructed scene from a stereo pair of cameras placed in a
pre-specified room where multiple 3D objects exist (Fig. 1
(c)). The scene is observed from a specified viewpoint D =
[xd, yd, zd]T (cyclopean eye of stereo pair) and the view-
direction is defined by the normal vector q = [q1, q2, 0]T .
An orthogonal grid G of length L and width W is created
(Fig. 1 (c)). G’s parametrization variables are α ∈ {−W/2+
i· γ; i = 0, 1, 2, ...,W/γ}, β ∈ {−L/2+j ·γ; j = 0, 1, 2, ...,
L/γ} and �W/γ� = W/γ, �L/γ� = L/γ, where γ is the dis-
tance between the grid points. The centered at D, grid GD,
is given by the equation:

GD = Rz(−θ1)Ry(−(π/2 − φ1))G + D (3)

where Rz and Ry are the rotation matrices about the y and
z axis, respectively and q’s (Fig. 1 (c)) spherical coordinates
are θ1(longitude) and φ1(latitude). Each point gDαβ

∈ GD

is the center of a circular sector SDαβ
given by the equation:

SDαβ
= Rz(−θ1)Ry(−(π/2 − φ1))S + gDαβ

(4)
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Fig. 2. Library models.

A distance map is created per SDαβ
. Each point sDαβrψ

∈
SDαβ

is the origin of an oriented ray with direction q. The
distance dDαβrψ

between sDαβrψ
and the 2.5D triangulated

scene is computed. The point sDαβrψ
for which dDαβrψ

is
minimum, is denoted as s0αβ

and it is stored for the sector
SDαβ

, as well as its corresponding distance d0αβ
(Fig. 1 (d)).

Having as input s0αβ
, d0αβ

and q, a ray that intersects the
object surface at point JDαβ

is defined (Fig. 1 (d)). JDαβ
is

given by the equation:

JDαβ
= q · d0αβ

+ s0αβ
(5)

The distance map is defined by the points Φαβrψ
= [r ·

cos(ψ), r · sin(ψ), dDαβrψ
− d0αβ

]T . The variables W,L
must have a large enough value so that if the plane, that is
defined by G’s grid points, is moved perpendicular to q, then
the 3D objects of the scene are contained in the swept volume
(Fig. 1(c)).

2.3. Descriptor vector

In order to create the descriptor vector Δ from a distance
map, distance map’s stored distances are arranged in ascend-
ing order. Then, a 2D histogram that counts the number of
sector points whose distance ((dhωrψ

− d0hω
) or (dDαβrψ

−
d0αβ

) for a model or a scene sector point, respectively) is
falling within each of N distance bins, is created (the range
of the 2D histogram is [0, Dmax] and N = 60). The more
the bins, the more precise is the histogram. Δ is formed as
the normalized percentage of the number of each bin’s sec-
tor points to the total number of the sector points that fall
within 2D histogram’s range. ΔDαβ

is created from SDαβ

and ΔMhω
is created from Shω of the object M . Suppos-

ing thatΔDαβ
, ΔMhω

are the N dimensional descriptor vec-
tors, their percentage of dissimilarity is given by the equa-

tion: KDαβMhω
=

∑N
i=1

(
|ΔDαβ

(i)−ΔMhω
(i)|

N

)
. When 80%

of the total number of points of a distance map has distance
equal to “−1”, the created descriptor vector may lead to mis-
leading dissimilarities. Thus, it is not taken into account. This
limitation further reduces the number of the created descriptor
vectors for the scene and the 3D models.

3. OBJECT RECOGNITION AND POSE
ESTIMATION

Prior to recognition procedure, theΔMhω
descriptors are cre-

ated and stored in the model library. Afterwards, the dissim-

(a) (b)

Fig. 3. Found gDαβ
(red dots) (a) before clustering (b) after

clustering

ilarity for a ΔDαβ
is computed for all ΔMhω

. The ΔMhω

for which the computed KDαβMhω
is below a threshold de-

termines the object M to whom ΔDαβ
corresponds. Then,

the point JMhω
(which lies on M surface), corresponds to

the point JDαβ
(which lies on scene’s surface). Thus, a point

correspondence between JDαβ
and JMhω

is established. The
pairs of all JMhω

, JDαβ
result in a sizeable set of point cor-

respondences between the surface of object M and a scene
surface. This set is used to align the surface of the library
object M to the surface of the scene.

4. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed recognition sys-
tem a model library consisted of 8 synthetic models was cre-
ated (Fig. 2). During the experimental procedure the perfor-
mance of the proposed approach was tested for noisy, clut-
tered and occluded scenes and it was compared to spin image
method [3]. The recognition success was verified by comput-
ing the rates of true positive (TP), false positive (FP) and false
negative (FN) [3]. The definitions of clutter and occlusion are
given in [4].

4.1. Generating parameters

The library models had comparable size. The k interval (sec-
tion 2.1) is obtained by dividing the height of the shortest ob-
ject by a number equal or higher than 5, in order to have an
adequate number of descriptors for the smallest object. The
angle interval b (section 2.1) of the cylindrical grid was set
to be about seven degrees. The variable R that defines the
S radius is crucial for the method. It is desired that the rays
starting from the sectors Shω, SDαβ

intersect the surface in
a large enough area so that the distance map will contain suf-
ficient information for the topology of the surface in order to
discriminate different surfaces. At the same time, if radius R
is set to be very large, a greater computation time will be re-
quired and scene’s distance maps will have more chances to
store distances for rays that intersect surfaces from different
objects due to occlusion and clutter. The optimum R belongs
to k ≤ R ≤ 1.5 · k. Experimentally, R was set to R = 1.4 · k.
It is desired that the points are dense on sector S in order to ex-
ist many origins. For that reason the S’s angle interval is set to
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be f=6◦ degrees and the radius interval is given by c = R/40.
The distance interval γ of G was set to γ ≤ k/2. The spin
image parameters were defined according to [3].

4.2. Analysis

The models were placed randomly in the scene and the num-
ber of models per scene varied from 4 to 8 in order to es-
timate the recognition rate at different clutter and occlusion
rates. It was assumed that only one object was present in the
scene and the other models were assumed unknown. Thus,
there were more candidate ΔDαβ

to be matched to ΔMhω

of the searched object M . Per recognition trial, the ΔDαβ

that corresponded to descriptor vectors of object M , were
found. ΔDαβ

were created from SDαβ
, whose center was

gDαβ
. gDαβ

points were lying on the plane that GD de-
fines. Using the ISODATA algorithm [6], the gDαβ

points
were classified into clusters based on their inter-distances.
The largest cluster was chosen (Fig. 3) as the one that contains
the points gDαβ

whose descriptor vectors will be used for the
pose estimation (section 3). Seven scenes were created us-
ing 8 (Fig. 2) models and totally 37 recognition experiments
were performed for the proposed method and spin image. For
each scene, the number of the recognition experiments was
equal to the number of models that were present to the scene.
The average number ofΔDαβ

per scene was 1814, while the
average number of spin images was 8465. Moreover the av-
erage number of extracted ΔMhω

per model was 712, while
the spin images per model were 2665. It is obvious that the
number of descriptor vectors was significant less than num-
ber of spin images. As a result the extraction and comparison
of descriptor vectors using the proposed method is quicker.
From Fig. 4 (a) is concluded that the average recognition rate
was 82% with up to 76% occlusion, while spin image recog-
nition rate was 73.5%. The recognition rate with respect to
clutter was 87.9% at 80% clutter and 80.5% for the method
in [3] (Fig. 4 (b)). Experimentally, it was shown that the
rate was mainly affected by occlusion. The average recogni-
tion rate was 81.1% (since 30 out of 37 recognition trials were
successful) and 73% for the method in [3].
Finally, the method was tested under the presence of noise.

The noise was added to the scene along the view-direction q
(Fig. 4 (d)), in order to simulate the noise that a range scanner
placed at D with viewing direction q would cause. The pro-
posed method is satisfactory to noise of σ = 1.75 cm, since
the percentage of correct recognition was 84.7% (while spin
image recognition rate was 81.5%) as it is depicted in (Fig.
4 (c)). At noise σ = 2.43 cm the rate was 76.3% for our
method and 71.5% for spin image.

5. CONCLUSION

In this paper a novel object recognition algorithm was pre-
sented. It is proved to be simultaneously fast and robust to a

(a) (b)

(c) (d)

Fig. 4. Recognition rate against (a) occlusion (b) clutter and
(c) noise. A scene with σ=1.75cm Gaussian noise (d).

satisfactory degree of noise, occlusion and clutter. Compari-
son to the spin image algorithm proved that our algorithm is
superior to spin image recognition.
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