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ABSTRACT

This paper presents a hardware implementation solution to a real 
time stereo matching problem using system of associative relations 
(SOAR) computational model. SOAR makes use of pair-wise pixel 
interactions captured as direction of derivatives to determine the 
underlying structure of associations within an analysis token. 
SOAR also offers a similarity measure to assess similarity of two 
such structures of associations.  This paper presents a suitable 
hardware implementation for real-time stereo correspondence 
using SOAR structural analysis tokens and similarity measure. The 
cost of hardware implementation using FPGA is presented along 
with performance improvements from frequency scaling, unit 
multiplicity and search depth for stereo matching. Real time stereo 
matching is achieved through hardware unit multiplicity and 
frequency scaling. 

Index Terms— Stereo Matching, Real Time, Associative 
Relations.

1. INTRODUCTION 

Real time stereo correspondence has been a center of attraction in 
robotics research and computer vision [1]. Several real time stereo 
matching systems have been developed in the literature. INRIA 
implementation [2], based on normalized cross correlation, was 
implemented on a FPGA consisting of 23 Xilinx logic cell arrays 
(LCA) and achieved a frame rate of 3.6 frames per second. In 
1995, Jet Propulsion Laboratory developed a stereo system using a 
Datacube MV-200 image processing board and a 68040 CPU 
board [3] achieving a rate of  1.7 frames per second. The CMU 
stereo machine [4] implemented a stereo matching method 
exploiting multibaseline stereo to improve depth estimates. CMU 
machine consisted of custom hardware and an array of eight TI 
C40 DSPs. The system was capable of processing 30 frames per 
second and claimed to be the fastest available system at the time.  

Woodfill and Henzen [5] implemented a stereo algorithm using 
census matching on the custom PARTS engine. The PARTS 
engine developed at the International Research Corporation was 
made up of 16 Xilinx 4025 FPGAs, arranged to fit on a standard 
PCI card. SRI’s SVS runs at 30 frames per second on a 700 MHz 
Pentium III processor, making real time stereo matching possible 
on the common desktop environment. Porter and Bergmann 
investigate in [6] the flexibility offered by an FPGA 
implementation and the suitability of various stereo algorithms for 
FPGA implementation.   

A reconfigurable matrix “VoC” is presented in [7] as a solution to 
stereo matching. VoC provides a highly parallel implementation of 
the SAD (Sum of Absolute Distances) metric. The design 
conceived in [7] implements the SAD computation either for 
blocks of 7 x 7 pixels or for blocks of 5 x 5 pixels, and has the 
capability of computing 9 simultaneous SAD for 5 x 5 pixel 
blocks. The structure of the VoC matrix is presented as a parallel 
processing unit to be integrated into a reconfigurable DSP which 
would be a part of a larger image processing system. The FPGA 
implementation produced a SAD rate of 1.4 billion comparisons  
per second at peak rate. In 2004, a commercial stereo vision 
system “DeepSea” was presented [8]. Deepsea is based on the 
census algorithm. A dedicated silicon implementation known as 
the “Deep Sea processor” attains a very high disparity rate. The 
DeepSea system can attain 2.6 billion pixel disparities per second. 

Most hardware based solutions reported in the literature are area 
based methods. A fast model-based stereo matching algorithm is 
presented in [9]. The algorithm is based on System of Associative 
Relations (SOAR) [10] architecture. The algorithm proposed in 
[9], unlike most area-based algorithms, does not depend solely on 
gray level averages. This algorithm utilizes feature vectors 
(tokens) formed by direction of derivates [9]. RASCor (Realtime 
Associative Stereo Correspondence ) presented here is based on 
SOAR algorithm and provides a hardware implementation of 
SOAR to achieve real time stereo correspondence using video 
sizes of 512x512 and frame rates of 30 frames/sec.

2. STEREO MATCHING USING SOAR 

The System of Associative Relations (SOAR) makes use of the 
pair-wise pixel associations. The pixels defined by a token over an 
image area are used to determine associations among pixels. This 
analysis token is basically an irregular mask that will determine 
the underlying structure of associations. To explore the 
associations among pixel elements defined by the token, SOAR 
maps each pixel to a processing node and sets the internal status of 
this processing node to be equal to the intensity of that particular 
pixel.
Suppose pixel intensities in a block (token) are : { Vij; i,j=1,2,….q 
}. SOAR encodes the larger/smaller information called the 
“interpixel connection strength" between pixels in this block as the 
signum of differences as

( , ; , )  sgn{ , ) where1 , , ,

                                            except:( , ) ( , )
ij klT i j k l V V i j k l q

i j k l
        (1) 
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In addition to formulating  a prescription to encode inter-pixel 
relationships in a block, an  ensemble inter-pixel association over 
P number of blocks is also formulated in [3] as given in eq.(2). 

1
sgn

P
p p

P ij kl
p

T (i, j;k,l) (V V )              (2) 

SOAR also defines a similarity measure among the token which 
has been stored in connections T(i,j;k,l) and a new token at another 
location by: 

( , ; , )*sgn( )ij kl
i j k l

E T i j k l V V       (3) 

It is not difficult to deduce from eq. (3) that E will attain its 
maximum value if the two patterns are correlated with a 
correlation coefficient of “1.” But it will reach its minimum value 
if the two patterns are correlated with a correlation coefficient of 
“–1.” Finally, E will have a value near zero if the two patterns are 
not correlated. That is, there is no resemblance between ordering 
of the pixels within the tokens compared.  It can also be seen that 
the similarity measure given in eq. (4) is a correlation indicator 
function between two specific patterns.   

In [9] authors proposed a solution to the correspondence problem 
in stereo vision using SOAR.  The degree of association of pixels 
within any arbitrary token of the image has been used as the 
parameter to obtain a match between the left and right images. 
This study utilizes inherent parallelism in SOAR stereo matching 
algorithm to offer hardware architecture to achieve real time stereo 
matching.

3.  RASCor ARCHITECTURE 

The real time associative stereo correspondence (RASCor) 
architecture is a custom designed hardware implementation. 
During design and implementation of RASCor emphasis is given 
to avoid use of complex logic blocks, and to maximize utilization 
of resources. The hardware design is split into functional blocks: 
performing inter-pixel strength computation, and pixel correlation. 
A data flow through model of the design has been illustrated in 
Figure 1.

In the data flow model, the stereo images are received by the 
hardware through the serial input and the disparity map is 
transmitted back using serial output. The system used for 
implementation is the Xilinx ML310 FPGA based embedded 
development platform. The heart of the board is a Virtex II Pro 
XC2VP30-FF896 FPGA containing dual PowerPC™ 405 
processors. The stereo images delivered to the hardware are 
buffered using multiple memory blocks on MIL310 development 
platform.

The pixel matching block in Figure 1 is the heart of the system and 
computes the disparity of the pixels between the left image and 
right image. The disparity values computed are mapped to a 
memory blocks and transferred to the host system through serial 
output.

Figure 1.  Data Flow Diagram 

3.1.   The Pixel Matching (PM) Block 

The Hardware model of the pixel matching block is illustrated in 
Figure 2. Two 5x16 bit register arrays form the primary input 
register set. The output of this block is the 16-bit disparity value. 
All inputs and output are aligned to 16-bits wide address locations 
to enable easy accessibility. Two register arrays of 5x16 bits (REG 
C and REG D) are assigned to hold the IPS (inter-pixel strength) 
values corresponding to the pixels from the left and right images. 
Two other 16-bit registers (REG A and REG B) are assigned to 
hold the position vectors of the left and right pixel. An equivalence 
gate consisting of eighty 1-bit XNOR logic gates is created and 
registers REG C (80 bits) and REG D (80 bits) are connected as 
inputs to the equivalence gate. The resultant 80-bit output is split 
and stored into five individual 16-bit shift registers which are 
connected to  a 5-bit counter each. The outputs of the five counters 
are summed up using an adder tree. The result obtained is the 
measure of similarity between the current left and right pixels. The 
output of the adder tree is then input to a 7-bit comparator. The 
second input to the comparator is a feedback from a 7-bit register 
holding the highest similarity measure after the previous operating 
cycle. The output of the comparator then acts as a select line to 
two 2-input multiplexers. One of them is a 7-bit multiplexer; with 
the ‘0’ input being the feedback line from REG 1 and the ‘1’ input 
line being the current output from the adder tree. 

The second multiplexer is a 16-bit device with the ‘0’ input being a 
feedback line from the REG 1 and the ‘1’ input coming from a 16-
bit subtractor computing REG B – REG A (using equation (16)). 
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Figure 2. Pixel Matching Block 

Based on results obtained from this logic both REG 1 and REG 2 
will be updated with the current values (if the comparator output is 
a ‘1’). REG1 holds the position of the best pixel and REG2 holds 
the energy associated with the match.  When the search depth is 
exhausted the values of REG1 and REG2 are output. REG1 
indicates the disparity and REG2 indicates the dependability of 
this decision.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

Table 1 lists the various hardware resources used by the design 
using two units of IPS blocks, for parallel computation of left and 
right image IPS values, and one PM block. Adders are added to the 
PM block, to enable faster counting of ‘1’s while computing the 
measure of similarity between two pixels. 
Table 1 – Hardware resource utilization of the SOAR system 

Hardware IP IPS Block  
(2 instances) 

PM Block 

Sequential logic 
Registers / Latches 

356 284

Comparators 160 2 
Adders  10 
XOR   80 

The FPGA resources utilized by the design are listed in Table 2. 
An FPGA contains configurable (programmable) logic blocks and 
configurable interconnect between these blocks. A Configurable
Logic Block (CLB) is a block of logic surrounded by routing 
resources. CLBs are the functional elements for constructing logic 
circuits. The Virtex-II Pro CLB is made up of four slices; each 
slice contains 2 Logic Cells (LC). An LC includes a 4-input Look-
Up Table (LUT), carry logic, and a storage element. A LUT is a 
function generator with N inputs and one output. A LUT can 
implement any logic function of its N inputs where N is between 3 
and 6; most popular are 4-input LUTs.

Table 2 – FPGA resources utilized by SOAR
FPGA

Resources
IPS Block 

(2 instances) 
PM Block Total 

Slices 4968 357 5325 
Flip Flops 1720 331 2051 

LUTs 9448 642 10090 

It can be observed from Table 2, that a major portion of FPGA 
resources are consumed for implementing logic units for IPS 
computation.  One of the prominent expenses in terms of area is 
the data width requirement. Because each pixel in an image 
translates into an 80 bit IPS value, handling of 80 bit data strings is 
required. The large flip-flop count in the IPS block is due to the 
shift RAM used for implementing the IPS hardware. 
Figure 3 shows a plot of the number of pixels vs. the execution 
time of IPS and PM units. The slopes of the line and the fact they 
will never intersect indicates that the IPS values will always be 
ready for the PM block making the pipeline free of hazards. 
Therefore, the IPS execution time is completely hidden by the PM 
processing time. It can be said that the system computation time 
will be the same as the PM block execution time. 

IPS vs PM execution time
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Figure 3.  IPS execution time vs. PM execution time 

Using  two  IPS units ,one for left image token and one for right 
image token, and 1 PM unit the  RASCor achieved a processing 
time of 2903.09 ms for  512 x 512 image sizes using a 9 x 9 square 
token, a search depth of 64 pixels and a system clock of 100MHz.  
This amounts to 5.6 million pixels matched per second. For 256 x 
256 with the same parameters the processing time per stereo image 
pair was 697.14 ms. Clearly with one IPS unit per image and one 
PM, one cannot achieve real time stereo rates.  The solution lies in 
either increasing the clock rate of FPGA, reducing the search depth 
and/or hardware unit replication. 
 
The throughput obtained from the hardware blocks depend on 
factors like the input image sizes, the search depth employed for 
pixel matching and most importantly the clock speed.  Only 
through frequency scaling the processing rate can be reduced to 
100 ms for a 256x256 image and 300MHz FPGA clock frequency. 
The computation time also varies with the search depth employed 
while computing the disparity of a pixel.  The performance versus 
search depth is given in Table 3 for an image size of 256x256 and 
token size 9. The time reported is the time in millisecond required 
to match two images of 256x256 to each other.   The near real time 
video rate is achievable using a 500 MHz clock and a search depth 
of 16. 
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Table 3 – Performance vs. Search depth 

F in MHz 100 200 300 400 500 
Search Depth 
(S) in pixels Time (T) in ms 

64 622.71 311.35 207.57 155.68 124.54
32 312.87 156.43 104.29 78.22 62.57
16 157.95 78.97 52.65 39.49 31.59

An increase in the search depth required means an increase in the 
computation time and an increase in the hardware resources 
required to implement the system. Better throughput can be 
achieved by replicating some of the hardware components used 
within the system. One such option is to replicate the hardware 
components used to compute the equivalence energy, thereby 
reducing the search steps by increasing the number of equivalence 
units. In Table 4, the time to match two images is given for image 
sizes of 512x512 and 256x156 using a token size of 9 and FPGA 
clock frequency of 200 MHz.  The number of search steps is set to 
64.  As the results presented in this table indicates real time 
performance is achievable for an image size of 512x512 and a 
search size of 64 by replicating equivalence blocks.  

Table 4 – Performance vs. number of equivalence components 
Image Width (M) in pixels 512 256 
Number of equivalence energy components  Time T in ms 

1 1296.56 311.35
4 651.43 156.43
32 86.94 20.88 
64 26.46 6.35 

However the gain in performance is marred by the large increase 
in hardware resources required since each equivalence component 
requires an IPS block. IPS computation as reported in Table 2 
accounts for most of the resource consumption. A less drastic 
approach would be to replicate the PM unit itself so as to be able to 
process two rows and columns of pixels in parallel. In Table 5 , 
performance improvements versus PM block replication is given 
for a clock rate of 200 MHz and search depth of 32 using a token 
size of 9.

Table 5 – Performance with PM unit replication 
Image size 512x512 256x256
Number of PM Units  Time T in ms 

1 651.43 156.43 
4 162.86 39.11 
8 81.43 19.55 

The disparity images for two well studied images are given in 
Figure 5 using SOAR stereo matching algorithm software 
implementation (a and b) and the hardware implementation (c and 
d). Please note that the hardware and software implementations are 
identical and thus should produce same results.

(a) Left Image   (b) Disparity MAP 

(c) Left Image   (d) Disparity MAP 
Figure 4:  Disparity MAPs for Park and Synthetic images 
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