
RASCor: REALTIME ASSOCIATIVE STEREO CORRESPONDENCE
Vikram Simhadri, Premanand Chandramani*, Yusuf Ozturk**

San Diego State University
Department of Electrical and Computer Engineering

simhadri@gmail.com, chandram@attila.sdsu.edu*, yozturk@mail.sdsu.edu**

ABSTRACT

This paper presents a hardware implementation solution to a real
time stereo matching problem using system of associative relations
(SOAR) computational model. SOAR makes use of pair-wise pixel
interactions captured as direction of derivatives to determine the
underlying structure of associations within an analysis token.
SOAR also offers a similarity measure to assess similarity of two
such structures of associations. This paper presents a suitable
hardware implementation for real-time stereo correspondence
using SOAR structural analysis tokens and similarity measure. The
cost of hardware implementation using FPGA is presented along
with performance improvements from frequency scaling, unit
multiplicity and search depth for stereo matching. Real time stereo
matching is achieved through hardware unit multiplicity and
frequency scaling.

Index Terms— Stereo Matching, Real Time, Associative
Relations.

1. INTRODUCTION

Real time stereo correspondence has been a center of attraction in
robotics research and computer vision [1]. Several real time stereo
matching systems have been developed in the literature. INRIA
implementation [2], based on normalized cross correlation, was
implemented on a FPGA consisting of 23 Xilinx logic cell arrays
(LCA) and achieved a frame rate of 3.6 frames per second. In
1995, Jet Propulsion Laboratory developed a stereo system using a
Datacube MV-200 image processing board and a 68040 CPU
board [3] achieving a rate of 1.7 frames per second. The CMU
stereo machine [4] implemented a stereo matching method
exploiting multibaseline stereo to improve depth estimates. CMU
machine consisted of custom hardware and an array of eight TI
C40 DSPs. The system was capable of processing 30 frames per
second and claimed to be the fastest available system at the time.

Woodfill and Henzen [5] implemented a stereo algorithm using
census matching on the custom PARTS engine. The PARTS
engine developed at the International Research Corporation was
made up of 16 Xilinx 4025 FPGAs, arranged to fit on a standard
PCI card. SRI’s SVS runs at 30 frames per second on a 700 MHz
Pentium III processor, making real time stereo matching possible
on the common desktop environment. Porter and Bergmann
investigate in [6] the flexibility offered by an FPGA
implementation and the suitability of various stereo algorithms for
FPGA implementation.

A reconfigurable matrix “VoC” is presented in [7] as a solution to
stereo matching. VoC provides a highly parallel implementation of
the SAD (Sum of Absolute Distances) metric. The design
conceived in [7] implements the SAD computation either for
blocks of 7 x 7 pixels or for blocks of 5 x 5 pixels, and has the
capability of computing 9 simultaneous SAD for 5 x 5 pixel
blocks. The structure of the VoC matrix is presented as a parallel
processing unit to be integrated into a reconfigurable DSP which
would be a part of a larger image processing system. The FPGA
implementation produced a SAD rate of 1.4 billion comparisons
per second at peak rate. In 2004, a commercial stereo vision
system “DeepSea” was presented [8]. Deepsea is based on the
census algorithm. A dedicated silicon implementation known as
the “Deep Sea processor” attains a very high disparity rate. The
DeepSea system can attain 2.6 billion pixel disparities per second.

Most hardware based solutions reported in the literature are area
based methods. A fast model-based stereo matching algorithm is
presented in [9]. The algorithm is based on System of Associative
Relations (SOAR) [10] architecture. The algorithm proposed in
[9], unlike most area-based algorithms, does not depend solely on
gray level averages. This algorithm utilizes feature vectors
(tokens) formed by direction of derivates [9]. RASCor (Realtime
Associative Stereo Correspondence) presented here is based on
SOAR algorithm and provides a hardware implementation of
SOAR to achieve real time stereo correspondence using video
sizes of 512x512 and frame rates of 30 frames/sec.

2. STEREO MATCHING USING SOAR

The System of Associative Relations (SOAR) makes use of the
pair-wise pixel associations. The pixels defined by a token over an
image area are used to determine associations among pixels. This
analysis token is basically an irregular mask that will determine
the underlying structure of associations. To explore the
associations among pixel elements defined by the token, SOAR
maps each pixel to a processing node and sets the internal status of
this processing node to be equal to the intensity of that particular
pixel.
Suppose pixel intensities in a block (token) are : { Vij; i,j=1,2,….q
}. SOAR encodes the larger/smaller information called the
“interpixel connection strength" between pixels in this block as the
signum of differences as

(, ; ,) sgn{ ,) where1 , , ,

 except:(,) (,)
ij klT i j k l V V i j k l q

i j k l
 (1)

VI - 1971-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

In addition to formulating a prescription to encode inter-pixel
relationships in a block, an ensemble inter-pixel association over
P number of blocks is also formulated in [3] as given in eq.(2).

1
sgn

P
p p

P ij kl
p

T (i, j;k,l) (V V) (2)

SOAR also defines a similarity measure among the token which
has been stored in connections T(i,j;k,l) and a new token at another
location by:

(, ; ,)*sgn()ij kl
i j k l

E T i j k l V V (3)

It is not difficult to deduce from eq. (3) that E will attain its
maximum value if the two patterns are correlated with a
correlation coefficient of “1.” But it will reach its minimum value
if the two patterns are correlated with a correlation coefficient of
“–1.” Finally, E will have a value near zero if the two patterns are
not correlated. That is, there is no resemblance between ordering
of the pixels within the tokens compared. It can also be seen that
the similarity measure given in eq. (4) is a correlation indicator
function between two specific patterns.

In [9] authors proposed a solution to the correspondence problem
in stereo vision using SOAR. The degree of association of pixels
within any arbitrary token of the image has been used as the
parameter to obtain a match between the left and right images.
This study utilizes inherent parallelism in SOAR stereo matching
algorithm to offer hardware architecture to achieve real time stereo
matching.

3. RASCor ARCHITECTURE

The real time associative stereo correspondence (RASCor)
architecture is a custom designed hardware implementation.
During design and implementation of RASCor emphasis is given
to avoid use of complex logic blocks, and to maximize utilization
of resources. The hardware design is split into functional blocks:
performing inter-pixel strength computation, and pixel correlation.
A data flow through model of the design has been illustrated in
Figure 1.

In the data flow model, the stereo images are received by the
hardware through the serial input and the disparity map is
transmitted back using serial output. The system used for
implementation is the Xilinx ML310 FPGA based embedded
development platform. The heart of the board is a Virtex II Pro
XC2VP30-FF896 FPGA containing dual PowerPC™ 405
processors. The stereo images delivered to the hardware are
buffered using multiple memory blocks on MIL310 development
platform.

The pixel matching block in Figure 1 is the heart of the system and
computes the disparity of the pixels between the left image and
right image. The disparity values computed are mapped to a
memory blocks and transferred to the host system through serial
output.

Figure 1. Data Flow Diagram

3.1. The Pixel Matching (PM) Block

The Hardware model of the pixel matching block is illustrated in
Figure 2. Two 5x16 bit register arrays form the primary input
register set. The output of this block is the 16-bit disparity value.
All inputs and output are aligned to 16-bits wide address locations
to enable easy accessibility. Two register arrays of 5x16 bits (REG
C and REG D) are assigned to hold the IPS (inter-pixel strength)
values corresponding to the pixels from the left and right images.
Two other 16-bit registers (REG A and REG B) are assigned to
hold the position vectors of the left and right pixel. An equivalence
gate consisting of eighty 1-bit XNOR logic gates is created and
registers REG C (80 bits) and REG D (80 bits) are connected as
inputs to the equivalence gate. The resultant 80-bit output is split
and stored into five individual 16-bit shift registers which are
connected to a 5-bit counter each. The outputs of the five counters
are summed up using an adder tree. The result obtained is the
measure of similarity between the current left and right pixels. The
output of the adder tree is then input to a 7-bit comparator. The
second input to the comparator is a feedback from a 7-bit register
holding the highest similarity measure after the previous operating
cycle. The output of the comparator then acts as a select line to
two 2-input multiplexers. One of them is a 7-bit multiplexer; with
the ‘0’ input being the feedback line from REG 1 and the ‘1’ input
line being the current output from the adder tree.

The second multiplexer is a 16-bit device with the ‘0’ input being a
feedback line from the REG 1 and the ‘1’ input coming from a 16-
bit subtractor computing REG B – REG A (using equation (16)).

VI - 198

Figure 2. Pixel Matching Block

Based on results obtained from this logic both REG 1 and REG 2
will be updated with the current values (if the comparator output is
a ‘1’). REG1 holds the position of the best pixel and REG2 holds
the energy associated with the match. When the search depth is
exhausted the values of REG1 and REG2 are output. REG1
indicates the disparity and REG2 indicates the dependability of
this decision.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

Table 1 lists the various hardware resources used by the design
using two units of IPS blocks, for parallel computation of left and
right image IPS values, and one PM block. Adders are added to the
PM block, to enable faster counting of ‘1’s while computing the
measure of similarity between two pixels.
Table 1 – Hardware resource utilization of the SOAR system

Hardware IP IPS Block
(2 instances)

PM Block

Sequential logic
Registers / Latches

356 284

Comparators 160 2
Adders 10
XOR 80

The FPGA resources utilized by the design are listed in Table 2.
An FPGA contains configurable (programmable) logic blocks and
configurable interconnect between these blocks. A Configurable
Logic Block (CLB) is a block of logic surrounded by routing
resources. CLBs are the functional elements for constructing logic
circuits. The Virtex-II Pro CLB is made up of four slices; each
slice contains 2 Logic Cells (LC). An LC includes a 4-input Look-
Up Table (LUT), carry logic, and a storage element. A LUT is a
function generator with N inputs and one output. A LUT can
implement any logic function of its N inputs where N is between 3
and 6; most popular are 4-input LUTs.

Table 2 – FPGA resources utilized by SOAR
FPGA

Resources
IPS Block

(2 instances)
PM Block Total

Slices 4968 357 5325
Flip Flops 1720 331 2051

LUTs 9448 642 10090

It can be observed from Table 2, that a major portion of FPGA
resources are consumed for implementing logic units for IPS
computation. One of the prominent expenses in terms of area is
the data width requirement. Because each pixel in an image
translates into an 80 bit IPS value, handling of 80 bit data strings is
required. The large flip-flop count in the IPS block is due to the
shift RAM used for implementing the IPS hardware.
Figure 3 shows a plot of the number of pixels vs. the execution
time of IPS and PM units. The slopes of the line and the fact they
will never intersect indicates that the IPS values will always be
ready for the PM block making the pipeline free of hazards.
Therefore, the IPS execution time is completely hidden by the PM
processing time. It can be said that the system computation time
will be the same as the PM block execution time.

IPS vs PM execution time

1

10

100

1000

10000

100000

1000000

10000000

No of P
ixe

ls 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

Number of Pixels computed

E
xe

cu
tio

n
tim

e
(in

 C
lo

ck
 c

yc
le

s)

IPS
PM

Figure 3. IPS execution time vs. PM execution time

Using two IPS units ,one for left image token and one for right
image token, and 1 PM unit the RASCor achieved a processing
time of 2903.09 ms for 512 x 512 image sizes using a 9 x 9 square
token, a search depth of 64 pixels and a system clock of 100MHz.
This amounts to 5.6 million pixels matched per second. For 256 x
256 with the same parameters the processing time per stereo image
pair was 697.14 ms. Clearly with one IPS unit per image and one
PM, one cannot achieve real time stereo rates. The solution lies in
either increasing the clock rate of FPGA, reducing the search depth
and/or hardware unit replication.

The throughput obtained from the hardware blocks depend on
factors like the input image sizes, the search depth employed for
pixel matching and most importantly the clock speed. Only
through frequency scaling the processing rate can be reduced to
100 ms for a 256x256 image and 300MHz FPGA clock frequency.
The computation time also varies with the search depth employed
while computing the disparity of a pixel. The performance versus
search depth is given in Table 3 for an image size of 256x256 and
token size 9. The time reported is the time in millisecond required
to match two images of 256x256 to each other. The near real time
video rate is achievable using a 500 MHz clock and a search depth
of 16.

VI - 199

Table 3 – Performance vs. Search depth

F in MHz 100 200 300 400 500
Search Depth
(S) in pixels Time (T) in ms

64 622.71 311.35 207.57 155.68 124.54
32 312.87 156.43 104.29 78.22 62.57
16 157.95 78.97 52.65 39.49 31.59

An increase in the search depth required means an increase in the
computation time and an increase in the hardware resources
required to implement the system. Better throughput can be
achieved by replicating some of the hardware components used
within the system. One such option is to replicate the hardware
components used to compute the equivalence energy, thereby
reducing the search steps by increasing the number of equivalence
units. In Table 4, the time to match two images is given for image
sizes of 512x512 and 256x156 using a token size of 9 and FPGA
clock frequency of 200 MHz. The number of search steps is set to
64. As the results presented in this table indicates real time
performance is achievable for an image size of 512x512 and a
search size of 64 by replicating equivalence blocks.

Table 4 – Performance vs. number of equivalence components
Image Width (M) in pixels 512 256
Number of equivalence energy components Time T in ms

1 1296.56 311.35
4 651.43 156.43
32 86.94 20.88
64 26.46 6.35

However the gain in performance is marred by the large increase
in hardware resources required since each equivalence component
requires an IPS block. IPS computation as reported in Table 2
accounts for most of the resource consumption. A less drastic
approach would be to replicate the PM unit itself so as to be able to
process two rows and columns of pixels in parallel. In Table 5 ,
performance improvements versus PM block replication is given
for a clock rate of 200 MHz and search depth of 32 using a token
size of 9.

Table 5 – Performance with PM unit replication
Image size 512x512 256x256
Number of PM Units Time T in ms

1 651.43 156.43
4 162.86 39.11
8 81.43 19.55

The disparity images for two well studied images are given in
Figure 5 using SOAR stereo matching algorithm software
implementation (a and b) and the hardware implementation (c and
d). Please note that the hardware and software implementations are
identical and thus should produce same results.

(a) Left Image (b) Disparity MAP

(c) Left Image (d) Disparity MAP
Figure 4: Disparity MAPs for Park and Synthetic images

5. REFERENCES

[1] M.Z. Brown, D. Burschka, G.D. Hager, “Advances in
Computational Stereo”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, August 2003, pp. 993-1008, Vol. 25,
No. 8.
 [2] O. Faugeras et.all, “Real Time Correlation-Based Stereo:
Algorithm, Implementations and Applications,” INRIA Technical
Report, RR 2013, 1993. Number - RR 2013.
[3] L. Matthies, A. Kelly, T. Litwin, and G. Tharp, “Obstacle
Detection for Unmanned Ground Vehicles: A Progress Report,”
Proceedings of IEEE Intelligent Vehicles `95 Conference,
September, 1995, pp. 66 – 71, Month: September.
[4] S. Kimura, T. Kanade, H. Kano, A. Yoshida, E. Kawamura,
and K. Oda, “CMU Video-Rate Stereo Machine,” Mobile Mapping
Symposium, May 24-26, 1995, Columbus, OH.
[5] K. Muhlmann, D. Maier, J. Hesser, and R. Manner,
“Calculating Dense Disparity Maps from Color Stereo Images, an
Efficient Implementation,” Proc. IEEE Workshop Stereo and
Multi-Baseline Vision, 2001, pp. 30-36.
[6] Reid B. Porter Neil W. Bergmann , “A generic implementation
framework for fpga based Stereo Matching”, TENCON '97. IEEE
Region 10 Annual Conference. Speech and Image Technologies
for Computing and Telecommunications'., Proceedings of IEEE, 2-
4 Dec 1997, pp. 461-464, Vol 2.
[7] Jacobi, R.P, Cardoso, R.B., Borges, G.A, "VoC: a
reconfigurable matrix for stereo vision processing", 20th
International Parallel and Distributed Processing Symposium,
2006. (IPDPS 2006), 25-29 April 2006, pp. 6.
 [8] Woodfill J.I., Gordon, G, Buck, R, "Tyzx DeepSea High
Speed Stereo Vision System", Conference on Computer Vision
and Pattern Recognition Workshop, 2004, 02 June 2004, pp. 41 –
41.
[9] Yusuf Ozturk and Arvind Sridharan, “FAST MODEL BASED
STEREO MATCHING USING SOAR”, 2004 International
Conference on Image Processing, 24-27 Oct. 2004, pp. 1337 –
1340, Vol.2.
[10] Y. Ozturk, H. Abut, “SOAR: System of Associative
Relations”, Thirty-First Asilomar Conference on Signals, Systems
& Computers, 2-5 Nov. 1997, pp. 668 – 672, Vol.1

VI - 200

