
A HIGH THROUGHPUT ENCODER FOR HIGH DYNAMIC RANGE IMAGES

Firas Hassan and Joan Carletta

Department of Electrical and Computer Engineering
The University of Akron

Akron, Ohio USA

ABSTRACT

An encoder for high dynamic range (HDR) images is proposed that
is compatible with the JPEG2000 compression engine and can
provide three different versions of the image to the user at the
receiver end depending on his needs. The first version is a gray
scale HDR image. The second is a local tone-mapped version of
the color HDR image suitable for display on conventional devices.
By combining data from the first two versions, the original color
HDR image can be reconstructed. The proposed HDR encoder was
implemented on a field programmable gate array, and has high
enough throughput to support a system processing 1024×768
images at a rate of 60 frames per second.

Index Terms— high dynamic range, field programmable gate
array, JPEG2000

1. INTRODUCTION

The sheer volume of data required to represent a HDR image is a
bottleneck limiting the use of HDR images. Current research is
investigating encoding of HDR images, removing redundant or
perceptually unimportant information, in ways suitable to interface
with lossy compression engines such as JPEG2000. It is highly
desirable to be able to do this encoding in real-time, and embedded
within a camera. However, published HDR encoders have been
implemented mostly on workstations and graphics cards without
regard to resource or time constraints. The work described in this
paper develops a HDR image encoder that operates in real-time on
an embedded system with high throughput and low cost.

The paper is organized as follows. Section 2 describes related
work, while Section 3 describes the proposed HDR image encoder
in detail. Section 4 shows the results obtained from synthesizing
and verifying the design. Section 5 draws conclusions.

2. BACKGROUND

The pioneering compression algorithms for HDR images, such as
RGBE [1] and LogLuv [2], used lossless methods and were not
efficient. An early HDR image encoder compatible with lossy
compression techniques was presented in [3]. Mantiuk et al.
transform the HDR data to the Luv space (similar to logLuv) and
quantize the color components linearly. Then they use a global
tone mapping operator to perceptually quantize the luminance

component. The resulting image is sent to an MPEG video
compressor. In [4], Mantiuk et al. introduced a compact
reconstruction function that is used to decompose the HDR image
into a standard low dynamic range (LDR) stream and a residual
stream that together can be used to reconstruct the original image.
A similar approach was suggested by Ward et al. in [5]. Both [4]
and [5] targeted MPEG video compression; because the MPEG
protocol does not allow for additional channels, the residual image
must be sent in a subband. As a result, the methods concentrated
on decorrelating the residual from the LDR image and coding the
data so that it will fit in a subband.

Use of JPEG2000 for high dynamic range applications has two
advantages: JPEG2000 allows for more precision than MPEG, and
it allows for additional channels that can be used to send
luminance data. Xu et al. develop in [6] an encoder for HDR
images that can be used as a front end for a JPEG2000
compression engine. They send a 16-bit logarithm of every color
component to the engine. However, they are not able to
downsample the chrominance red and chrominance blue inside the
compression engine (as is usually done in JPEG2000 to decrease
the size of the compressed image) because in the log domain the
chrominance spaces bear significant information. Finally,
Munkberg et al. and Roimela et al. suggest textural compression of
HDR images in [7] and [8], respectively; both methods were
implemented on graphics cards.

Our encoder uses a local tone mapping operator that is a variant of
the operator suggested by Reinhard et al. in [9]. This operator has
been implemented on graphics cards by Goodnight et al. in [10]
and Krawczyk et al. in [11]. The implementation in [11] processes
1024×768 images at a rate of 14 frames per second; this is not
considered real-time. Our work, which implements a hardware-
friendly variant of the Reinhard operator inside the encoder, has
been implemented on a field programmable gate array and has
high enough throughput for real-time applications.

3. HDR IMAGE ENCODER

The block diagram of our HDR image encoder is shown in Figure
1 and is made up of five subblocks. At the input, the high dynamic
range image is represented as an RGB triplet, where each element
is a 32-bit fixed-point value, with 16 bits of integer and 16 bits of
fraction. The luminance calculation subblock scales the RGB
triplet by 216 in order to transform the numbers to integer and

VI - 2131-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

calculates the luminance component of a pixel in fixed-point
mathematics as:

 BGRL 114.0587.0299.0 . (1)

The local tone mapping subblock then uses a Reinhard-like
operator to get the tone mapped version of the luminance
component Lmap. This subblock is described in more detail in a
subsequent subsection.

The RGB triplet is buffered in external memory during the local
tone mapping of the luminance component. The latency of the
local tone mapping subblock is 28 rows of the input image. Hence,
for 1024x768 images three external memories, each of size
28×1024×32 bits, are needed.

Each buffered RGB triplet is fed to the color tone mapping
subblock simultaneously with its luminance before and after local
tone mapping (L and Lmap, respectively). Tone mapped color
components are computed using the approach developed by Hunt
in [12] and adopted in [11], which considers the sensitivity of the
rods in the human vision system and the blue shift of the subjective
hue of colors for night scenes. The computation is:

2621

2752 map
map L

LR
R (2)

2621

2542 map
map L

LG
G (3)

2621

3328 map
map L

LB
B . (4)

Before entering this subblock Lmap is saturated to a maximum value
of 255. The arithmetic operations are done in floating-point;
division is simplified by using an iteration based on the Newton-
Raphson method to find the reciprocal, after retrieving an initial
guess for the iteration from a look-up table that is indexed on a
limited number of bits of the mantissa. The procedure is such that
one look-up and one iteration are enough to achieve the required
precision. The mapped RGB triplet is converted to fixed-point at
the output of the subblock. To convert to fixed point, the mantissa
of every mapped component is sent to a barrel shifter controlled by
its exponent. Each mapped color component is represented by 10
bits of integer.

Finally, the base-2 logarithm subblock calculates the log-
luminance log2(L) of each pixel. An estimate of the logarithm can
be found based on the number of leading zeros in L; the integer
part of the base-2 logarithm is determined solely by the position of
the most significant ‘1’ in L, while the fraction part is determined
by the remaining bits in L via lookup table. The size of the lookup
table and the error in the estimation depends on how many bits we
choose to use as the address and how many fraction bits we choose
to store in the table; for the work described here, we used an
address size of eleven and word size of eleven; the log-luminance
is represented as 16-bit fixed-point, with 5 bits of integer and 11
bits of fraction.

3.1. The local tone mapping subblock
Local tone mapping of the luminance components of the image is
done via a modified Reinhard operator. We developed hardware
that approximates the original method well, but is simple enough
for real-time embedded processing. Full details, including a study
that compares the original operator to our approximation, are given
in [13]. A block diagram of our hardware-friendly variant of the
Reinhard operator is given in Figure 2. The input to this subsystem
is the luminance component L of every pixel. In the Reinhard
operator, a nine-scale Gaussian pyramid is used to estimate the
illumination local to a pixel; our hardware-friendly variant has an
approximate Gaussian pyramid that replaces the nine scales with
four scales (of size 8x8, 14x14, 28x28 and 56x56 pixels,
respectively) and uses rising and falling geometric series, which
can be computed with simple accumulator structures, in place of
the exponential rise and decay of a true Gaussian. This
approximation is a key to being able to do the local tone mapping
in real time on embedded low cost hardware.

A global logarithmic average of the luminance is also computed to
provide an estimate of the global illumination. This is done by
computing the sum of the base-2 logarithms of all the pixels in the
image, using the already described technique to make the
logarithm calculation hardware-friendly. The global illumination is
estimated as 2 raised to this sum, and corresponds to the average of
all the pixels. Because this global average requires access to the
entire image, it can not be computed until a frame has been
received in its entirety. To achieve real-time performance, the log
average luminance of the previous frame can be used to normalize
the pixels of the current video frame. This choice is justifiable for
because global illumination generally does not change
dramatically between two consecutive video frames.

Figure 1. The proposed HDR image encoder.

Figure 2. The block diagram of the embedded version of the
Reinhard operator.

VI - 214

Finally, the normalization subblock divides the input luminance
component by a weighted sum of the local and global illumination
estimates, using:

globalavelocalave

map LaL
L

L
__

 (5)

where a is a weighting factor, Lave_local is the local estimate of
illumination around the pixel, Lave_global is the global illumination
estimate and Lmap is the mapped luminance represented in floating
point.

4. IMPLEMENTATION AND RESULTS

The output of our HDR image encoder can be fed to a four-channel
JPEG2000 lossy compression engine. The three usual JPEG2000
channels can be used to compress the mapped RGB triplet. An
additional channel can be allocated to compress the log-luminance
component. At the decoder side, the user may choose to receive
only the log-luminance component; this component, which is
shown for the Memorial image from [1] in Figure 3(b), contains
high dynamic range information, and can be used to reconstruct a
high dynamic range gray scale version of the image (by applying
an inverse log transform).

Alternatively, the user can choose to receive the mapped RGB
channels only. These channels provide a low dynamic range color
image appropriate for immediate display on a conventional display
device. The mapped RGB version of our example image is shown
in Figure 3(c).

If desired, the user can also choose to reconstruct the original HDR
image. In this case, the user needs both the log-luminance and
mapped RGB channels. The original luminance component can be
reconstructed by taking the inverse base-2 logarithm of the log-
luminance channel, and the luminance fed into an implementation
of the proposed Reinhard-like local tone mapper on the user side to
reproduce the mapped luminance component Lmap. Finally, L, Lmap
and a buffered version of the mapped RGB triplet can be fed to an
inverse color tone mapping subblock to reconstruct the original
HDR RGB triplet.

The HDR image encoder was implemented using an Altera FPGA
from the Stratix II family. The architecture was sized in order to
accommodate high resolution images of high dynamic range with
768×1024 pixels and 32 bits per pixel. The architecture was
described in VHDL, and synthesized for the Stratix device using
Altera’s Quartus II v5.0 toolset; functionality of the system was
verified by simulating the processing of test images using
Modelsim. Table 1 summarizes the synthesis report from Quartus.
The simplicity of hardware is reflected in the clock speed
achieved, and in the low utilization of look-up tables.

Typically, a video frame has horizontal blanking periods of 64
pixels, and a vertical blanking period of 32 rows. Given that we
would like to achieve a video frame rate of 60 frames per second,
and that there are (1024+64)*(768+32) or 870,400 pixels in the
frame when we include the blanking periods, we need to be able to
process 60*870,400 = 52.24 megapixels per second. Our
architecture, which has a maximum operating frequency of 68.03
MHz, can accommodate this by taking in one pixel per clock.

To verify the design, we implemented a fixed-point Matlab
simulation that matches the hardware exactly. A HDR video

(a) original HDR image

(color, containing high dynamic range
and processed using software from [1]

to display)

(b) log-luminance

(containing information needed to
reconstruct a gray scale high dynamic

range image)

(c) mapped RGB

(color, with low dynamic range
appropriate for display)

Figure 3. The Memorial HDR image from [1], and the output of the proposed HDR encoder.

VI - 215

decoder was also implemented in Matlab. Using a set of images
from the Debevec library we checked the PSNR of the
reconstructed RGB triplet at the output of the decoder relative to
the 32-bit RGB triplet at the input of the system. Table 2 shows the
PSNR for a set of images from the Debevec library. Note that the
numbers shown indicate only the degree to which information is
lost in the proposed encoding/decoding process; they do not
include losses in the JPEG2000 compression itself. Note also that
the size of the noise is comparable for all the images; however, the
PSNR values vary because PSNR depends on the dynamic range
of the particular test image. The dynamic range of the images in
Table 2 varies from six bits of integer for Vinesunset to twelve bits
of integer for Nave. The PSNR values show that the images can be
successfully reconstructed.

5. CONCLUSIONS

This paper presents a novel HDR color image encoder. The
encoder uses a separate channel for a 16-bit log-luminance
component, and three channels for a 30-bit local tone mapped
RGB triplet. The output of the encoder can be fed to a JPEG2000
compression engine where the log-luminance is compressed in a
separate channel, while the mapped color channels are treated as a
conventional low dynamic range color image. We believe that our
encoding method will give more freedom to the user than previous
methods in [4] and [5] that use a residual ratio image. The residual
ratio image is not useful to the user in itself, while the log-
luminance component here can be used to reconstruct a HDR gray
scale image. By using JPEG2000, we also can use more precision
than approaches based on MPEG; this should result in better

reconstruction. While we have not yet studied overall efficiency of
our method when coupled with JPEG2000, we anticipate that
JPEG2000 will be able to compress our encoded images more
effectively than those in [6], because our mapped RGB triplets can
be treated by JPEG2000 as a regular low dynamic range image,
and therefore downsampling of the chrominance components can
be enabled. Furthermore, our encoder has been implemented in
real-time on low-cost hardware suitable for embedding in
applications such as cameras.

REFERENCES

[1] P. E. Debevec and J. Malik, “Recovering high dynamic range
radiance maps from photographs,” Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive Techniques, pp.
369-378, 1997.

[2] G. W. Larson, “Overcoming gamut and dynamic range
limitations in digital images,” Proceedings of the 6th Color
Imaging Conference, pp. 214-219, 1998.

[3] R. Mantiuk, G. Krawczyk, K. Myszkowski, and H.-P. Seidel,
“Perception-motivated high dynamic range video encoding,” ACM
Transaction on Graphics, vol. 23, no. 3, pp. 733-741, 2004.

[4] R. Mantiuk, A. Efremov, K. Myszkowski, and H.-P. Seidel,
“Backward compatible high dynamic range MPEG video
compression,” SIGGRAPH 2006, pp. 713-723, 2006.

[5] G. Ward and M. Simmons, “Subband encoding of high
dynamic range imagery,” Proceedings of the 1st Symposium on
Applied Perception in Graphics and Visualization, pp. 83-90,
2004.

[6] R. Xu, S. N. Pattanaik and C. E. Hughes, “High-dynamic-
range still-image encoding in JPEG 2000,” IEEE Computer
Graphics and Applications, pp. 57-64, 2005.

[7] J. Munkberg, P. Clarberg, J. Hasslegren and T. Akenine-
Moller, “High dynamic range texture compression for graphics
hardware,” SIGGRAPH 2006, pp. 698-706, 2006.

[8] K. Roimela, T. Aarnio and J. Itaranta, “High dynamic range
texture compression,” SIGGRAPH 2006, pp.707-712, 2006.

[9] E. Reinhard, M. Stark, P. Shirley and J. Ferwerda,
“Photographic tone reproduction for digital images,” Proceedings
of the 29th Annual Conference on Computer Graphics and
Interactive Techniques, pp. 267 - 276, 2002.

[10] N. Goodnight, R. Wang, C. Woolley, and G. Humphreys,
“Interactive time-dependent tone mapping using programmable
graphics hardware,” Proceedings of the 14th Eurographics
Workshop on Rendering, vol. 44, pp. 26-37, 2003.

[11] G. Krawczyk, K. Myszkowski and H-P. Seidel, “Perceptual
effects in real-time tone mapping,” Proceedings of the 21st Spring
Conference on Computer Graphics, pp. 195-202, 2005.

[12] R. Hunt, The Reproduction of Colour in Photography,
Printing and Television: 5th Edition, Fountain Press, 1995.

[13] F. Hassan, J. Carletta, “A real-time FPGA-based architecture
for a Reinhard-like tone mapping operator,” Proceedings of
Graphics Hardware, San Diego, California, Aug. 2007.

Table 1. Summary of hardware synthesis report.

family Stratix II

device EP2SQ30F780C4

size of memory 3.23 Mbits

no. of flip-flops 17,151

no. of ALUTs 21,532

max operating frequency 68.03 MHz

Table 2. Peak signal-to-noise ratio of reconstructed HDR

images relative to the original images.

 PSNRR PSNRG PSNRB

Nave 98 97 88

Memorial 90 88 84

groveC 86 86 82

groveD 75 73 73

Rosette 86 86 65

Vinesunset 72 61 56

VI - 216

