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ABSTRACT 

An encoder for high dynamic range (HDR) images is proposed that 
is compatible with the JPEG2000 compression engine and can 
provide three different versions of the image to the user at the 
receiver end depending on his needs. The first version is a gray 
scale HDR image. The second is a local tone-mapped version of 
the color HDR image suitable for display on conventional devices. 
By combining data from the first two versions, the original color 
HDR image can be reconstructed. The proposed HDR encoder was 
implemented on a field programmable gate array, and has high 
enough throughput to support a system processing 1024×768 
images at a rate of 60 frames per second.  

Index Terms— high dynamic range, field programmable gate 
array, JPEG2000 

1. INTRODUCTION 

The sheer volume of data required to represent a HDR image is a 
bottleneck limiting the use of HDR images. Current research is 
investigating encoding of HDR images, removing redundant or 
perceptually unimportant information, in ways suitable to interface 
with lossy compression engines such as JPEG2000. It is highly 
desirable to be able to do this encoding in real-time, and embedded 
within a camera. However, published HDR encoders have been 
implemented mostly on workstations and graphics cards without 
regard to resource or time constraints. The work described in this 
paper develops a HDR image encoder that operates in real-time on 
an embedded system with high throughput and low cost.  

The paper is organized as follows. Section 2 describes related 
work, while Section 3 describes the proposed HDR image encoder 
in detail. Section 4 shows the results obtained from synthesizing 
and verifying the design. Section 5 draws conclusions. 

2. BACKGROUND 

The pioneering compression algorithms for HDR images, such as 
RGBE [1] and LogLuv [2], used lossless methods and were not 
efficient. An early HDR image encoder compatible with lossy 
compression techniques was presented in [3]. Mantiuk et al. 
transform the HDR data to the Luv space (similar to logLuv) and 
quantize the color components linearly. Then they use a global 
tone mapping operator to perceptually quantize the luminance 

component. The resulting image is sent to an MPEG video 
compressor. In [4], Mantiuk et al. introduced a compact 
reconstruction function that is used to decompose the HDR image 
into a standard low dynamic range (LDR) stream and a residual 
stream that together can be used to reconstruct the original image. 
A similar approach was suggested by Ward et al. in [5]. Both [4] 
and [5] targeted MPEG video compression; because the MPEG 
protocol does not allow for additional channels, the residual image 
must be sent in a subband. As a result, the methods concentrated 
on decorrelating the residual from the LDR image and coding the 
data so that it will fit in a subband.  

Use of JPEG2000 for high dynamic range applications has two 
advantages:  JPEG2000 allows for more precision than MPEG, and 
it allows for additional channels that can be used to send 
luminance data. Xu et al. develop in [6] an encoder for HDR 
images that can be used as a front end for a JPEG2000 
compression engine. They send a 16-bit logarithm of every color 
component to the engine. However, they are not able to 
downsample the chrominance red and chrominance blue inside the 
compression engine (as is usually done in JPEG2000 to decrease 
the size of the compressed image) because in the log domain the 
chrominance spaces bear significant information. Finally, 
Munkberg et al. and Roimela et al. suggest textural compression of 
HDR images in [7] and [8], respectively; both methods were 
implemented on graphics cards. 

Our encoder uses a local tone mapping operator that is a variant of 
the operator suggested by Reinhard et al. in [9]. This operator has 
been implemented on graphics cards by Goodnight et al. in [10] 
and Krawczyk et al. in [11]. The implementation in [11] processes 
1024×768 images at a rate of 14 frames per second; this is not 
considered real-time. Our work, which implements a hardware-
friendly variant of the Reinhard operator inside the encoder, has 
been implemented on a field programmable gate array and has 
high enough throughput for real-time applications. 

3. HDR IMAGE ENCODER 

The block diagram of our HDR image encoder is shown in Figure 
1 and is made up of five subblocks. At the input, the high dynamic 
range image is represented as an RGB triplet, where each element 
is a 32-bit fixed-point value, with 16 bits of integer and 16 bits of 
fraction. The luminance calculation subblock scales the RGB 
triplet by 216 in order to transform the numbers to integer and 
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calculates the luminance component of a pixel in fixed-point 
mathematics as: 

     BGRL 114.0587.0299.0 . (1) 

The local tone mapping subblock then uses a Reinhard-like 
operator to get the tone mapped version of the luminance 
component Lmap.  This subblock is described in more detail in a 
subsequent subsection. 

The RGB triplet is buffered in external memory during the local 
tone mapping of the luminance component. The latency of the 
local tone mapping subblock is 28 rows of the input image. Hence, 
for 1024x768 images three external memories, each of size 
28×1024×32 bits, are needed. 

Each buffered RGB triplet is fed to the color tone mapping 
subblock simultaneously with its luminance before and after local 
tone mapping (L and Lmap, respectively). Tone mapped color 
components are computed using the approach developed by Hunt 
in [12] and adopted in [11], which considers the sensitivity of the 
rods in the human vision system and the blue shift of the subjective 
hue of colors for night scenes. The computation is: 
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Before entering this subblock Lmap is saturated to a maximum value 
of 255. The arithmetic operations are done in floating-point; 
division is simplified by using an iteration based on the Newton-
Raphson method to find the reciprocal, after retrieving an initial 
guess for the iteration from a look-up table that is indexed on a 
limited number of bits of the mantissa. The procedure is such that 
one look-up and one iteration are enough to achieve the required 
precision. The mapped RGB triplet is converted to fixed-point at 
the output of the subblock. To convert to fixed point, the mantissa 
of every mapped component is sent to a barrel shifter controlled by 
its exponent. Each mapped color component is represented by 10 
bits of integer.  

Finally, the base-2 logarithm subblock calculates the log-
luminance log2(L) of each pixel. An estimate of the logarithm can 
be found based on the number of leading zeros in L; the integer 
part of the base-2 logarithm is determined solely by the position of 
the most significant ‘1’ in L, while the fraction part is determined 
by the remaining bits in L via lookup table. The size of the lookup 
table and the error in the estimation depends on how many bits we 
choose to use as the address and how many fraction bits we choose 
to store in the table; for the work described here, we used an 
address size of eleven and word size of eleven; the log-luminance 
is represented as 16-bit fixed-point, with 5 bits of integer and 11 
bits of fraction. 

3.1. The local tone mapping subblock 
Local tone mapping of the luminance components of the image is 
done via a modified Reinhard operator. We developed hardware 
that approximates the original method well, but is simple enough 
for real-time embedded processing. Full details, including a study 
that compares the original operator to our approximation, are given 
in [13]. A block diagram of our hardware-friendly variant of the 
Reinhard operator is given in Figure 2. The input to this subsystem 
is the luminance component L of every pixel. In the Reinhard 
operator, a nine-scale Gaussian pyramid is used to estimate the 
illumination local to a pixel; our hardware-friendly variant has an 
approximate Gaussian pyramid that replaces the nine scales with 
four scales (of size 8x8, 14x14, 28x28 and 56x56 pixels, 
respectively) and uses rising and falling geometric series, which 
can be computed with simple accumulator structures, in place of 
the exponential rise and decay of a true Gaussian. This 
approximation is a key to being able to do the local tone mapping 
in real time on embedded low cost hardware. 

A global logarithmic average of the luminance is also computed to 
provide an estimate of the global illumination. This is done by 
computing the sum of the base-2 logarithms of all the pixels in the 
image, using the already described technique to make the 
logarithm calculation hardware-friendly. The global illumination is 
estimated as 2 raised to this sum, and corresponds to the average of 
all the pixels. Because this global average requires access to the 
entire image, it can not be computed until a frame has been 
received in its entirety. To achieve real-time performance, the log 
average luminance of the previous frame can be used to normalize 
the pixels of the current video frame. This choice is justifiable for 
because global illumination generally does not change 
dramatically between two consecutive video frames. 

 
Figure 1. The proposed HDR image encoder. 

 

Figure 2. The block diagram of the embedded version of the 
Reinhard operator. 
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Finally, the normalization subblock divides the input luminance 
component by a weighted sum of the local and global illumination 
estimates, using: 

     
globalavelocalave

map LaL
L

L
__

 (5) 

where a is a weighting factor, Lave_local is the local estimate of 
illumination around the pixel, Lave_global is the global illumination 
estimate and Lmap is the mapped luminance represented in floating 
point.  

4. IMPLEMENTATION AND RESULTS 

The output of our HDR image encoder can be fed to a four-channel 
JPEG2000 lossy compression engine. The three usual JPEG2000 
channels can be used to compress the mapped RGB triplet. An 
additional channel can be allocated to compress the log-luminance 
component. At the decoder side, the user may choose to receive 
only the log-luminance component; this component, which is 
shown for the Memorial image from [1] in Figure 3(b), contains 
high dynamic range information, and can be used to reconstruct a 
high dynamic range gray scale version of the image (by applying 
an inverse log transform). 

Alternatively, the user can choose to receive the mapped RGB 
channels only.  These channels provide a low dynamic range color 
image appropriate for immediate display on a conventional display 
device.  The mapped RGB version of our example image is shown 
in Figure 3(c). 

If desired, the user can also choose to reconstruct the original HDR 
image. In this case, the user needs both the log-luminance and 
mapped RGB channels. The original luminance component can be 
reconstructed by taking the inverse base-2 logarithm of the log-
luminance channel, and the luminance fed into an implementation 
of the proposed Reinhard-like local tone mapper on the user side to 
reproduce the mapped luminance component Lmap. Finally, L, Lmap 
and a buffered version of the mapped RGB triplet can be fed to an 
inverse color tone mapping subblock to reconstruct the original 
HDR RGB triplet.  

The HDR image encoder was implemented using an Altera FPGA 
from the Stratix II family. The architecture was sized in order to 
accommodate high resolution images of high dynamic range with 
768×1024 pixels and 32 bits per pixel. The architecture was 
described in VHDL, and synthesized for the Stratix device using 
Altera’s Quartus II v5.0 toolset; functionality of the system was 
verified by simulating the processing of test images using 
Modelsim. Table 1 summarizes the synthesis report from Quartus. 
The simplicity of hardware is reflected in the clock speed 
achieved, and in the low utilization of look-up tables.  

Typically, a video frame has horizontal blanking periods of 64 
pixels, and a vertical blanking period of 32 rows. Given that we 
would like to achieve a video frame rate of 60 frames per second, 
and that there are (1024+64)*(768+32) or 870,400 pixels in the 
frame when we include the blanking periods, we need to be able to 
process 60*870,400 = 52.24 megapixels per second. Our 
architecture, which has a maximum operating frequency of 68.03 
MHz, can accommodate this by taking in one pixel per clock. 

To verify the design, we implemented a fixed-point Matlab 
simulation that matches the hardware exactly. A HDR video 

 
(a) original HDR image 

(color, containing high dynamic range 
and processed using software from [1] 

to display) 

 
(b) log-luminance 

(containing information needed to 
reconstruct a gray scale high dynamic 

range image) 

 
(c) mapped RGB 

(color, with low dynamic range 
appropriate for display) 

Figure 3. The Memorial HDR image from [1], and the output of the proposed HDR encoder. 
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decoder was also implemented in Matlab. Using a set of images 
from the Debevec library we checked the PSNR of the 
reconstructed RGB triplet at the output of the decoder relative to 
the 32-bit RGB triplet at the input of the system. Table 2 shows the 
PSNR for a set of images from the Debevec library. Note that the 
numbers shown indicate only the degree to which information is 
lost in the proposed encoding/decoding process; they do not 
include losses in the JPEG2000 compression itself. Note also that 
the size of the noise is comparable for all the images; however, the 
PSNR values vary because PSNR depends on the dynamic range 
of the particular test image. The dynamic range of the images in 
Table 2 varies from six bits of integer for Vinesunset to twelve bits 
of integer for Nave. The PSNR values show that the images can be 
successfully reconstructed. 

5. CONCLUSIONS 

This paper presents a novel HDR color image encoder. The 
encoder uses a separate channel for a 16-bit log-luminance 
component, and three channels for a 30-bit local tone mapped 
RGB triplet. The output of the encoder can be fed to a JPEG2000 
compression engine where the log-luminance is compressed in a 
separate channel, while the mapped color channels are treated as a 
conventional low dynamic range color image. We believe that our 
encoding method will give more freedom to the user than previous 
methods in [4] and [5] that use a residual ratio image. The residual 
ratio image is not useful to the user in itself, while the log-
luminance component here can be used to reconstruct a HDR gray 
scale image. By using JPEG2000, we also can use more precision 
than approaches based on MPEG; this should result in better 

reconstruction. While we have not yet studied overall efficiency of 
our method when coupled with JPEG2000, we anticipate that 
JPEG2000 will be able to compress our encoded images more 
effectively than those in [6], because our mapped RGB triplets can 
be treated by JPEG2000 as a regular low dynamic range image, 
and therefore downsampling of the chrominance components can 
be enabled. Furthermore, our encoder has been implemented in 
real-time on low-cost hardware suitable for embedding in 
applications such as cameras. 
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Table 1. Summary of hardware synthesis report. 

family Stratix II 

device EP2SQ30F780C4 

size of memory 3.23 Mbits 

no. of flip-flops 17,151 

no. of ALUTs 21,532 

max operating frequency 68.03 MHz 

 
Table 2. Peak signal-to-noise ratio of reconstructed HDR 

images relative to the original images. 

 PSNRR PSNRG PSNRB 

Nave 98 97 88 

Memorial 90 88 84 

groveC 86 86 82 

groveD 75 73 73 

Rosette 86 86 65 

Vinesunset 72 61 56 
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