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ABSTRACT 

Implementing the Discrete Wavelet Transform, which is 
being increasingly recognized in image/video compression 
standards, in hardware is highly area-consuming. In this 
paper, a new high-performance lifting-based architecture 
with optimized error vs. hardware cost is proposed for the  
9-7 DWT. In the proposed architecture each constant 
coefficient multiplier of the conventional lifting structure is 
split into two new constant multipliers in order to minimize 
the hardware implementation cost and quantization error. 
Using an optimization process the appropriate coefficients 
are determined according to the hardware cost and quality 
requirements of each application. Simulation results indicate 
an average quality improvement of 13.5 dB with the same 
hardware resources. For achieving the same quality, it 
requires 40% less hardware resources, which makes it 
suitable for embedded systems. 
 
Index Terms— Discrete wavelet transform, constant 
multiplier, lifting-based architecture, Embedded systems 

1 INTRODUCTION

The rapid growth of visual media in many applications has 
led to a variety of image and video compression standards. 
The Discrete Wavelet Transform (DWT), a popular domain 
transform, separates high and low frequency characteristics 
of an image to further improve the coding efficiency. 
Convolution is the conventional method to implement DWT, 
while the lifting scheme is an efficient DWT implementation 
method  [1]. The lower computational complexity and 
reduced memory requirements of lifting-based DWT have 
made it the best choice for hardware implementations. 
Many researches have focused on the architectural 
complexities including several convolution-based 
architectures introduced in  [2], and DWT architectures based 
on the lifting scheme  [3], including one-dimensional (1-D) 
and two dimensional (2-D) implementations  [4]. On the 
other hand, in order to optimize the lifting structure of DWT, 
flipping architecture  [5] has been introduced, in which the 
critical path and memory requirements are reduced by 
scaling the constant coefficients.  [6],  [7] and  [8] have also 
focused on the efficient quantization and its effect on the 
performance of the lifting structure.  

Although many studies have been performed on the lifting 
structure, only few of them have focused on either 
optimizing the computation engine on the basis of modifying 
the constant coefficients  [5], or the effect of quantizing them 
 [6],  [7] and  [8]. The computation engine of the lifting 
scheme consists of a number of constant multipliers, whose 
hardware implementation is area and power consuming. In 
this paper, a split structure is proposed which offers a 
flexible method for designing an optimized cost-error 
architecture for the computation engine of the lifting 
method. In the proposed technique original lifting 
coefficients are first split into two constant multipliers and 
optimized by applying a local optimization. Then, the lifting 
structure is optimized by analyzing different combinations of 
the introduced constant multipliers.  
The paper is organized as follows: In section 2, the proposed 
architecture including split constant multiplier and optimized 
lifting-based DWT architecture, are proposed. The achieved 
performance is demonstrated in section 3, followed by 
conclusions. 

2 PROPOSED METHOD 

According to the fact that the constant multiplier is the most 
important and area-consuming module of 9-7 lifting 
structure, the proposed method in this paper optimizes 2-D 
DWT by optimizing its constant multipliers. First the 
hardware cost and error of each constant coefficient 
multiplier is optimized individually; next the obtained 
constant coefficients are used to improve the overall 
hardware cost and quality of the lifting structure of 2D 9-7 
DWT. 
2-1 Split Constant multiplier 
An array multiplier as the primary architecture of constant 
multipliers consists of a number of rows of n-bit adders, 
where n is the bit-width of the input.  The number of rows of 
n-bit adder is equal to the number of ‘1’ bits of the constant 
coefficient minus one. The area occupied by the constant 
multiplier is equal to the total number of 1-bit full adder 
cells multiplied by the area of a 1-bit adder. To put it more 
simply, the hardware cost of a constant multiplier is defined 
as the number of 1-bit full adder cells, which depends on the 
bit-width of input and the number of adders, which in turn 
depends on the ‘1’ bits of the constant value. In order to 
minimize the number of ‘1’ bits, the Canonical Signed Digit 
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(CSD) representation has been proposed  [9]. CSD takes 
advantage of the two common methods, normal and booth 
multiplier. As a result, the exact hardware cost can be 
modeled by (1) in terms of 1-bit full adder cells, where 
const_ones is the number of ‘1’s of the constant coefficient 
in the CSD representation. 

nonesconstCost )1_(  (1) 
The error at output of a constant multiplier, that exists due to 
the quantization of the constant coefficient, is defined as the 
difference of the real output and the ideal output and 
calculated by (2). The ideal output (z) is the result of the 
multiplication with ideal coefficient, and the real output (z’) 
is achieved from the quantized coefficient. 

2)( zzError  (2) 

2-1-1 The main idea of Split Multiplier 
The main idea behind the Split method is to break the 
constant coefficient, c, into two new constant coefficients 
such that c is equal to c1 multiplied by c2. Using this 
technique and internal node quantization, discussed later, 
three changing factors are introduced to optimize the 
hardware cost and quantization error of the multiplier. As 
shown in Figure 1, the multiplication is being performed in 
two phases; in the first phase the input variable is multiplied 
by c1, and in the second phase the result is multiplied by c2. 
In this figure y is the partial result (internal node), y’ is the 
quantized value of y, and z and z’ are the outputs of the 
original and the proposed architecture, respectively. 
Quantizing the partial result, which means reducing its bit-
width, imposes error on the final output while reducing the 
hardware cost of the second multiplier, c2. As simulation 
results show, the trade-off between the cost and the error, 
imposed by partial result quantization, introduces improved 
cost-error points. 
The hardware cost of the proposed architecture is equal to 
the summation of hardware cost of constant multipliers c1 
and c2. Hardware cost of the first multiplier is equal to 
number of ‘1’ bits of first coefficient minus one (nc1 1) 
multiplied by the bit width of the inputs (nx). As, the bit 
width of its output is (nc1+ nx), the bit width of the second 
multiplier input after applying the truncation is (nc1+nx nq). 
As a result, hardware cost of the proposed structure can be 
calculated using (3) where nq is the number of truncated bits 
of the partial result. 
According to (2), error is calculated using (4) where eq is the 
error introduced by performing quantization on the partial 
result, x is the input of constant multiplier, p(x) is its 
probability distribution and N is the largest value of x. 
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Figure 1.Constant multiplier, (a) Standard,                           
(b) Split main idea (c) Split structure 

2-1-2 Optimization process 
There are three parameters that are changed during the 
optimization procedure by using individual loops for each of 
them, as shown in Figure 2. The first parameter is the value 
of c1 that is chosen according to its bit width (nc1), and varies 
from 0.5 to 1.0, with steps of 1/2nc1. The second parameter is 
the number of bits truncated from the partial result (nq), and 
the third is the bit width of c2, (nc2) which is iterated in the 
last loop. Then in the body of these nested loops, c2 is 
calculated and error and cost are estimated using (3) and (4). 
Finally, the corresponding cost-error point is added to the 
optimum solution set if it offers a better cost or error 
comparing to existing results. Using the optimization 
process the best coefficients (c1 and c2) and their 
corresponding bit widths (nc1, nc2, nq) will be obtained for 
various cost or error constraints. 
It should be noted that c2 is the quantized value of c/c1. If 
truncation is used, the lower bits of c2 are dropped, while 
when using rounding, c2 is approximated to its nearest 
number (up or down) according to its bit width (nc2). 
Simulation results show that rounding is more precise than 
truncation and leads to better cost-error results. 
 
for all c1 values 
 for all truncation bits of y’ (nq) 
  for all bit_width of c2 (nc2) 
   Calculate c2  
   Calculate cost-error //(3) and (4) 
   Add to optimum curve if qualified 

Figure 2. Optimization process for a constant multiplier 

2-1-3 Experimental results of Split multiplier  
The experimental results of optimizing one of the constant 
multipliers in the lifting structure ( ) is shown in Figure 3. In 
this figure, there are three cost-PSNR curves corresponding 
to a standard multiplier, and split multipliers using 
truncation and rounding. The standard curve is obtained by 
changing the bit width dedicated to the constant coefficient 
( ) and calculating its hardware cost and error. The two 
other curves are achieved using split idea and the 
optimization process, shown in Figure 2. It is shown that 
both curves of split method have better PSNR comparing to 
the standard multiplier. Also, the rounding method shows a 
better performance than a simple truncation. Hence, the 
rounding technique is used to optimize the lifting 
coefficients, discussed later.  
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Figure 3. Cost-PSNR of the proposed and standard structures 
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2-2 Optimizing the DWT Architecture 
Our main goal in this paper is to perform optimization on 
cost-error of the computation core of 9-7 DWT by focusing 
on the constant multipliers of lifting structure. This paper 
does not tend to propose a new architecture; instead a 
general method is proposed that can be applied to any 
system level designed architecture. Our main idea for 
optimizing cost and error of the lifting structure is to use a 
two level optimization, local and global. In the local step, 
constant multipliers of lifting coefficients are optimized 
using the split method proposed in the previous section, 
resulting in an optimum cost-error curve for each coefficient. 
Then in the global step, cost and error of DWT lifting 
structure is optimized using different combinations of the 
optimized coefficients. 

2-2-1 DWT Architecture 
During the wavelet step of JPEG2000 encoder  [10], image is 
decomposed into four distinct LL, HL, LH and HH 
subbands, as shown in Figure 4. LL which is the low-
resolution subband can be decomposed into four subbands, 
recursively. The wavelet subbands are individually coded 
and transmitted to the decoder where by applying the inverse 
wavelet transform, the image is reconstructed. 
 

Original
Image

LL LH

HL HH

LH

HL HH

LL LH

HL HH Reconstructed
Image

Encoder Decoder  
Figure 4. 2D multi resolution wavelet and Subbands 

2-D DWT consists of two one-dimensional (1-D) wavelet 
transforms which act as the computational engine of DWT 
module with lifting structure, as shown in Figure 5. Outputs 
of this module, Yi, are calculated in six steps, where Xi are 
inputs of the engine, , , , , k and k-1 are constant 
coefficients,  and P, Q, R and S are internal nodes. These 
constant multipliers are area and power-consuming which 
highlights the importance of optimizing this structure. 

 
Figure 5. The lifting-based structure of 9-7 DWT filter 

2-2-2 Cost and Error Estimation 
As it is expected the overall cost is simply equal to the 
summation of all constant coefficient multipliers cost. It is 
assumed that the output bit widths of the internal multiplier 
nodes in lifting structure are the same as their input bit 
widths. This means that the quantization errors of internal 
nodes of the lifting are ignored for both the standard and the 
proposed structures. 
Overall error of DWT is defined as the quality difference of 
the input image that is applied to the encoder and the 
reconstructed image after the completion of decoding. To 
focus on the effect of lifting optimization, it is assumed that 
the other steps of the encoder and decoder are lossless. Also, 
it is supposed that the reconstructed image using the high 
precision coefficients is the reference image to estimate the 
error. Following the above assumptions, error calculation 
consists of two phases: first the effect of coefficient’s error 
on the subbands’ error is calculated for the encoding step. 
Then error of the reconstructed image is estimated using 
subbands' error, propagated through the decoding step.  
The error introduced by splitting each of the six coefficients 
in 9-7 DWT, causes error on each subband with different 
weights. So, in the first phase, the subband error is 
calculated as the weighted sum of the coefficients’ error by 
(5). The error values introduced by coefficients cancel each 
other, therefore some of the weight factors are positive, and 
some of them are negative. These weights are extracted for 
each subband using simulation, as reported in Table 1. In the 
second phase, the error in the reconstructed image is 
calculated as the weighted sum of the subband errors using 
(6). These weights are L2Norm factors that show the effect 
of each subband on the reconstructed image  [10]. 

2rkwkwwwwwE rkks
 

212121  

(5) 

HHLHHLLLsEwE sstotal ,,,  (6) 

Table 1. Weight of coefficients’ error on subband error 
w w w w wk wrk

LL 98 -870 172 8.5 125 0 
HL 50 -240 70 2.8 6 8 
LH 50 -240 70 3.2 4 5.5 
HH 5 -23 6 0 0 6 
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2-2-3 DWT Optimization 
The process of optimizing the DWT structure consists of two 
phases, as shown in Figure 6. First all coefficients of lifting 
structure are optimized using the split method, described in 
Figure 2.  Then six constant coefficients are iterated on the 
optimum choices using individual loops for each. In the 
body of these nested loops, total cost and overall error are 
calculated. The achieved coefficients are added to the 
optimum coefficient set if they offer a better cost or error 
comparing to existing ones.  
for coefficients ( , , , , k, k-1) 
 run split method (Figure 2) 
for all optimum points of  
 for all optimum points of  
  for all optimum points of  
   for all optimum points of  
    for all optimum points of k 
     for all optimum points of k-1 
       Calc cost-error  
       Add to optimum list if qualified 
Figure 6. The optimization process of DWT lifting structure 

3 SIMULATION RESULTS 

In this section, the cost-PSNR of the 9-7 DWT structure, 
optimized by split method, is compared to that of the 
standard structure with original coefficients. For the split 
method the optimization process of Figure 6 is used to 
derive coefficients, while in the case of standard structure, 
the original coefficients of lifting are selected by changing 
the number of quantized bits. The ranges of bit width applied 
in the simulation of each method, and the bit width assumed 
for the input of each multiplier are shown in Table 2. 
In order to calculate the improvement of the proposed 
method, the cost-error results of these two simulations are 
compared in Figure 7. In this figure, the horizontal axis is 
hardware cost which is equal to the total number of full 
adder cells as defined in (3), while the vertical axis 
represents the corresponding PSNR quality measured in dB 
unit, calculated by (6). Figure 7 shows that the proposed 
method improves the quality by 13.5 dB in average (3.0-
30.0dB), without increasing the hardware cost. Similarly, for 
achieving the same quality the proposed architecture is 40% 
area consuming in terms of 1-bit full adder cell. 
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Figure 7. Cost-quality of proposed and standard structures 

Table 2. Bit width of different nodes in simulation 
Node Bit  Node bit  
input 10 standard coefficients 1-15 
split coefficients 1-15 internal node truncation 0-5 

4 CONCLUSION 

This paper addressed the trade-off in the terms of hardware 
cost and error of 9-7 DWT by optimizing the constant 
coefficient multipliers of lifting structure. In order to 
improve the performance of this structure we proposed a 
split architecture, in which each constant coefficient was 
substituted by two new constant coefficients to gain cost-
error improvement. Then, using an optimization process, the 
new optimized coefficients were chosen according to the 
equations derived for hardware cost and PSNR calculation. 
Simulation results show an average quality improvement of 
13.5 dB with the same hardware resources, and hardware 
reduction of 40% for the same PSNR quality. Offering 
higher quality and consuming lower hardware resources 
shows its superior performance for embedded applications. 
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