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ABSTRACT 
 This paper presents the use of Kullback-Leibler Distance 
(KLD) as part of an optimization framework to incorporate prior 
knowledge from field maps into non-rigid registration of echo-
planar (EPI) to structural magnetic resonance brain images.  An 
analytical expression is derived for the derivatives of KLD with 
respect to registration transformation parameters, which is shown 
to be computationally more efficient as compared to the derivatives 
of mutual information. Quantitative gold standard validation is 
carried out on simulated digital brain phantom images with 
synthesized deformations. In addition, in-vivo validation is 
performed via a cross-comparison of the similarity of high-
resolution and low-resolution EPI to T1- and T2-weighted 
structural images. The results obtained indicate that the developed 
KLD-based non-rigid registration technique provides an effective 
way of correcting local distortions in echo-planar imaging. 
 
 Index Terms – Non-rigid Image Registration, Magnetic 
Resonance Echo-Planar Imaging, Kullback-Leibler Distance. 

1. INTRODUCTION 
 Magnetic resonance Echo Planar Imaging (EPI) is widely 
used as a fast data acquisition technique providing acceptable time 
resolution for functional brain imaging. It is also deemed 
appropriate for the acquisition of large MR datasets on Diffusion 
Tensor Imaging (DTI) and Arterial Spin Labeling (ASL).However, 
EPI images suffer from spatial distortions that are mainly caused 
by magnetic field inhomogeneity artifacts. The accumulation of 
error over the long duration of phase encoding causes significant 
spatial distortions in the phase encoding direction of EPI images 
[1]. Such distortions can compromise the accuracy of functional 
activation detection and functional localization [2], as well as the 
analysis of DTI and ASL EPI datasets. 
 One approach to retrospective distortion correction in EPI is 
non-rigid registration to an undistorted structural MRI [3],[4],[5]. 
There has been considerable progress on inter-subject and subject-
to-template non-rigid registration of high-resolution brain 
structural scans [2]. However, the application of non-rigid 
registration to EPI is much more challenging due to the 
characteristics of EPI images, which include unclear structural 
features, limited spatial resolution, and local nonlinear distortions. 
Finding local correspondences between EPI and high-resolution 
structural images is problematic. The few studies of non-rigid 
registration of EPI to structural MRI have relied on intensity-based 
similarity measures, specifically the Mutual Information (MI) 
measure [2]-[5]. In comparison to the physics-based constraints 
that are used in [3] and [4] for spin-echo and gradient-echo EPI 
images, hard parameter constraints are utilized in [5] within a 

limited memory bound constraint optimization algorithm (L-
BFGS-B) [6], which was originally used in [7] for non-rigid 
registration of PET and CT images of the chest. More recently, in 
an MI-based technique, estimation of field map images are used as 
a guiding mechanism to constrain the transformation model to the 
distortion regions [8]. 
 This paper presents an approach to improve the accuracy and 
reliability of the non-rigid registration technique discussed in [5] 
by utilizing the concept of the Kullback-Leibler Distance (KLD) 
measure in information theory [9]. This concept has been primarily 
used in rigid multi-modal registration of digital subtraction 
angiogram to magnetic resonance angiogram images [10]. Among 
the few recent studies that have utilized KLD as a similarity 
measure [10]-[13], only one [13] has addressed the non-rigid 
registration problem. Two main issues are addressed in this work. 
First, in most of the previous studies, pre-aligned images have been 
considered to serve as prior knowledge, while in practice such pre-
alignments may not exist or may not be accurate for in-vivo 
images. Second, the computation of KLD and its derivatives is an 
important issue when considering high-dimensional non-rigid 
registration. The derivatives of this measure should be computed 
with respect to all the transformation parameters during each 
iteration, which is computationally quite inefficient if done with 
finite element methods. This issue has been discussed for MI in 
[7],[14] and for KLD using Gaussian function models in [13]. 

The idea of using KLD in this work is to incorporate prior 
knowledge from field maps into the non-rigid registration 
algorithm, not only by constraining the deformation field 
parameters (as discussed in [8]), but also in computing the 
similarity. An efficient general-purpose computation of KLD and 
its derivatives is formulated using B-Spline basis functions in 
section 2 and is subsequently modified for the functional imaging 
registration application. In section 3, the local performance of KLD 
and MI measures and quantitative gold standard validation are 
presented based on digital brain phantom images with simulated 
deformations. This section also includes an in-vivo validation via a 
cross-comparison of the similarity of high-resolution and low-
resolution EPI with T1- and T2-weighted MR images. 

2. NON-RIGID REGISTRATION 

2.1. Optimization Framework 
Mathematically, the source and target images can be modeled 

as two functions, ℜ→ℜ3:sI  and ℜ→ℜ3:tI , which associate 

scalar intensity values to points described by ( )zyxx ,,=  in the 

three-dimensional vector space 3ℜ . The target image, a high-
resolution undistorted structural MR image, is fixed, and the source 
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image, the distorted echo-planar image, undergo a spatial vector 
transformation of the form 
 ( ) 33: ℜ→ℜxT  (1) 

 The registration problem is aimed at finding an appropriate 
transformation T  to establish the most accurate mapping between 
the functional image space and the anatomical image space. The 
accuracy of such a mapping is defined based on the 
correspondences between the two images, and can be quantified by 
a cost function reflecting the dissimilarity of the transformed 
source and target images. That is 
 ( ) ( ) ℜ→Τ= :, TJTIIJ st

 (2) 

where T is the set of admissible transformation functions. Then, an 
optimization procedure is performed to minimize this cost function 
 )(minarg TJT

T
opt

Τ∈

=  (3) 

where 
optT  denotes the solution to the registration problem. 

 The choice of an optimization algorithm is critical in multi-
modality non-rigid registration. The algorithm chosen here is L-
BFGS-B, a quasi Newton optimization algorithm based on the so-
called limited memory BFGS (Broyden, Fletcher, Goldfarb, and 
Shanno) matrices for estimation of the Hessian matrix [6]. One of 
the most important features of L-BFGS-B is its capacity for posing 
constraints on the parameters, which is discussed in section 2.2. 

2.2. Transformation Model 
 The transformation model utilized here is a parametric free-
form deformation model with a regular grid of control points. The 
deformation model is defined by three displacement parameters for 
each of the control points and the deformation at any point of the 
image is computed by a separable cubic B-Spline interpolation on 
the local control point displacements [5]. By choosing appropriate 
control point grid spacing, coarser than the image spacing, a trade-
off between smoothness and local resolution of deformation is 
obtained. Due to the characteristics of B-Spline basis functions, 
this model is locally controllable, globally smooth and 
differentiable with respect to the deformation parameters. The 
latter is critical in computing the derivative of similarity measures 
(section 2.3). 
 As part of the L-BFGS-B optimization process, it is possible 
to use prior knowledge to pose constraints on the parameters of the 
described transformation model. For EPI, such prior knowledge 
can be obtained by physical analysis and field map acquisitions.  
Physical analysis shows that the effect of spatial distortions in EPI 
is much more significant in the phase encoding direction [1]; and 
phase images obtained from field map acquisitions can be used as a 
guide to detect distortion regions, i.e. for weighting the parameter 
bound constraints via estimating the magnitude of distortion. 

2.3. Kullback-Leibler Distance and its Derivative 
 Kullback-Leibler Distance (KLD) is a measure of distance 
between two probability density functions (pdfs) [9] which are 
considered to be a reference and a test pdf here. KLD is minimal 
when the pdfs are equal. The idea of utilizing KLD in non-rigid 
registration of EPI to structural MRI is to incorporate prior 
knowledge into the registration framework. Field map acquisitions 
show that only parts of an EPI image, e.g. parts of the inferior 
frontal cortex near the air-tissue interfaces (sinuses) and the 
inferior temporal lobes, are affected by spatial distortions. Hence, 
it is possible to compute a reference joint pdf between EPI and 
structural images on the undistorted brain region. This reference 
joint pdf is simply an estimation of the joint histogram of the two 

images on the undistorted region, and is represented by ( )μκν ;,°p  

as a function of transformation parameters ( μ ), where 
sL≤≤ν0  

and 
tL≤≤ κ0  denote the indices of the histogram bins, and 

sL  

and 
tL  are the numbers of bins over the intensity values of the 

source and target images. The test joint pdf is defined on the entire 
brain and is represented by ( )μκν ;,p . KLD is then defined as 

 ( ) ( )
( )
( )°

=
ν κ μκν

μκν
μκμ

;,

;,
log;,

p

p
vpKLD  (4) 

The minimization of KLD results in those transformation 
parameters which maximize the similarity of the reference and test 
joint pdfs. 
 The derivative of KLD with respect to the transformation 
parameters is needed for optimization, and is given by 
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This derivative depends on the partial derivatives of the joint pdfs. 
To have an efficient computation of the derivatives of the joint 
pdfs, Parzen window models using separable B-Spline kernels can 
be used [7],[14]. For both the reference and test joint pdfs, a zero-
order B-Spline kernel ( )( ).0β  is used for the target image, and a 

cubic B-Spline kernel ( )( ).3β  is used for the source image. Only the 

source image is transformed and this choice guarantees the 
smoothness of derivative computations. As a result, the smooth 
model of the joint histogram of ( )TII st ,  can be written as 

( ) ( ) ( )
Δ
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°
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(6) 
where V is a subset of voxels used in the computation of the joint 
pdf; and the voxel values for the images are normalized according 
to the minimum intensity values ( °

tI  and °
sI ), and the intensity 

range of each histogram bin (
tbΔ  and 

sbΔ ). 

 Note that the marginal pdf of the target image ( ( )κtp ) is the 

sum of the zero-order B-Spline functions in the separable 
formulation of equation (6), and is independent of the 
transformation parameters ( μ ). Therefore, the very first term 

inside the summations of equation (5) is zero since  
  ( ) ( ) .0;,

∈∈ ∈

=∂∂=∂∂
tt s L

t
L L

pp
κκ ν

μκμμκν
 

 It is worth mentioning that KLD provides  a general definition 
for MI. The definition of MI is derived from (4) by 
substituting ( ) ( ) ( )μνκμκν ;;, st ppp =° , where ( )μν ;sp  is the 

marginal pdf of the source image. Simplification of (5) with this 
substitution gives an expression for the derivative of MI, which 
complies with the expression derived in [14] 

 ( ) ( )
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 Going back to the derivatives of KLD measure in equation 
(4), further simplification of the registration algorithm is made 
possible by constraining the transformation parameters to the 
distortion regions. When the deformation is locally applied to the 
distortion regions, the reference joint pdf is not a function of μ , 

and this simple formula is obtained for the derivatives of KLD: 
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The reference joint pdf is computed once at the beginning of the 
registration algorithm. Consequently, the iterative computation of 
KLD derivatives in equation (7) is computationally more efficient 
than MI in equation (8) (the marginal pdf of the source image is 
computed during each iteration). Furthermore, it incorporates the 
prior knowledge into the registration framework. 
 According to (7) and (8), only the derivative of the test joint 
pdf is needed for the optimization. The derivative of the joint pdf as 
estimated in equation (6) is found by applying the chain rule [7], 
that is 
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The second product term in (9) is explicitly computed as a 
subtraction of two second-order B-Spline kernels [15]. The third 
product term is the gradient of the source image on a transformed 
point, and can be computed by finite element methods or using the 
derivative of B-Spline functions when B-Spline interpolation is 
applied. Finally, since the transformation model described in 
section 2.2 ([5], [3], [7]) is linear with respect to the transformation 
parameters, the last term simply denotes the coefficients of each of 
the parameters in the appropriate direction. By using the L-BFGS-
B optimization algorithm, the Hessian matrix is estimated through 
curvature using limited memory BFGS matrices [6] and thus there 
is no need for the computation of the second derivatives of (9). 

3. EXPERIMENTS 

3.1. Quantitative Gold Standard Validation 
 Quantitative validation was achieved in two steps using the 
Brainweb [16] digital brain phantom database. First local 
performance of KLD was considered in the presence of local 
synthetic deformations. Second, the registration algorithm was 
applied for the correction of synthetic deformations on simulated 
low-resolution PD-MRI images resembling the limitations of EPI. 
Figure 1 shows that KLD always reached a minimum level at the 
center of a local deformation synthesized on both high-resolution 
T2-weighted MRI and low-resolution (LR) PD-MRI. The reference 
joint pdf was computed on the undistorted regions between these 
images and the Brainweb high-resolution T1-weighted image; and 
the test joint pdf was computed on the entire brain (solid and 
dashed lines) and on the distortion region only (the dotted line). 
Figure 2 shows that for ten registration experiments that were done 
using the gold standard digital brain phantom simulated EPI and 
T1-weighted MRI, the average deformation error inside the region-
of-interest (ROI: part of the frontal cortex anterior of corpus 
callosum towards the sinuses) decreased; and the KLD-based non-
rigid registration algorithm utilizing prior information was more 
effective than the previously developed MI-based global non-rigid 
registration [5]. An improvement of up to 20% was gained. The 
KLD-based registration took less than an hour and was 10 to 15 
minutes faster than the previous technique for these experiments. 

3.2. In-vivo Validation 
 For in-vivo validation, the developed non-rigid registration 
technique was applied to 5 MRI datasets obtained from a Siemens 

Trio 3T scanner. Each dataset included a high resolution T1-
weighted anatomical MRI with a spatial resolution of 1.0×1.0×1.1 
mm3, structural T2-weighted turbo-spin echo (TSE) axial scans  
with spatial resolution of 0.9×0.9×3.0 mm3, a series of 5 low-
resolution fast gradient echo (GRE) EPI with a spatial resolution of 
3.5×3.5×3.5 mm3, a series of 5 high-resolution GRE EPI with a 
spatial resolution of 1.8×1.8×2.5 mm3, and a high-resolution dual-
echo GRE field map sequence with a spatial resolution of 
0.9×0.9×2.5 mm3. All of the images were initially co-registered to 
the high-resolution T1-weighted anatomical MRI using the 
standard affine registration technique of the SPM software 
package. Non-rigid registration was done between the high-
resolution (HR) EPI and each of the two structural MRI scans, i.e. 
T1- and T2-weighted MRI. The optimized transformation model in 
each case was then applied to the low-resolution (LR) EPI scans. 
 

 
Fig. 1: KLD measure computed between (a) high-resolution T1W 
and T2W, and (b) T1W and LR PD digital brain phantom images 
of the Brainweb dataset. KLD computed between the reference and 
test joint pdfs on the entire brain by: B-Spline Parzen window 
estimation (solid), rectangular non-parametric estimation of joint 
pdfs (dashed), and B-Spline Parzen window estimation when the 
test joint pdf is computed on the distortion region only (dotted). 

 
Fig. 2: Average deformation error computed in millimeters in the 
ROI for (a) ten synthetic deformations on the low-resolution 
simulated EPI images of the Brainweb dataset, (b) after 
registrations made by the previous MI-based non-rigid registration 
[5], and (c) after registrations made by the KLD-based technique. 
 
 A homogeneous control point spacing of 10×7×10 mm was 
used on the images. The parameter bound constraints were 
automatically calculated proportional to the processed phase field 
map values (a maximum ±9 mm constraint for phase values of ±  
rad/sec). A threshold of ±0.1  was used to detect the region of 
distortion. The deformation field was limited to this region and the 
reference joint pdf was calculated between the images excluding 
this region. The main parts of the program are developed based on 
C++ templates and classes of Insight Segmentation and 
Registration Toolkit (http://www.itk.org). The experiments take 
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around one hour on a dual processor 3.2 GHz Linux workstation 
with 4 Gigabytes RAM. 
 Figure 3 shows that while the registration was done between 
the HR-EPI and the structural scans, the NMI similarity measure 
was increased between LR-EPI and both of the structural scans. 
This can be regarded as an in-vivo validation of the algorithm. The 
mean and maximum of the deformation field parameters associated 
with this increase in NMI were 2.58 mm and 7 mm in the 
distortion region. Finally, Figure 4 shows a sample outcome of the 
registration algorithm on one of the in-vivo datasets. 

4. CONCLUSION 
 This paper has provided a KLD-based formulation to 
incorporate field map prior knowledge in non-rigid registration of 
EPI to structural magnetic resonance brain images. This KLD 
formulation is based on minimizing the distance between a 
reference and a test joint pdf between the source (EPI) and the 
target (structural MRI) image. A simplified expression is derived 
for the derivatives of KLD with respect to the transformation 
parameters, which makes this formulation computationally 
efficient as compared to the mutual information formulation. It is 
shown how phase field map data are used in setting appropriate 
bound constraints on the transformation parameters. The results 
obtained through gold standard and in-vivo validation indicate that 
the developed non-rigid registration technique provides a more 
effective approach as compared to the previously developed MI-
based approach towards registering EPI to structural MRI. 
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Fig. 3: Normalized MI computed between in-vivo HR and LR EPI 
and T1- and T2-weighted structural MR images, averaged over 5 
real datasets. 
 

 
Fig. 4: Sample outcome of the non-rigid registration algorithm; 
locked cursor axial slices of (a) EPI after affine registration to 
T1W structural MRI, (b) T1W structural MRI, and (c) EPI after 
non-rigid registration. The lines and markers point at the visible 
distortions and their correction. 
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