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ABSTRACT 
An algorithm for correcting the geometric distortions in the 
echo planar images and diffusion weighted images is 
described. In this method the geometric distortion in the 
echo planar imaging (EPI) data is corrected by non-rigid 
registration to conventional fast-spin echo (FSE) images. 
The registration is based on a variant of the Demon’s 
algorithm [10] with consistency enforced by an improved 
bijectivity scheme. Quantitative metrics based on the 
forward similarity and inverse consistency measures, 
calculated from the closest point distances of the image 
contours, are used to evaluate the performance of nonlinear 
registration algorithms. The experimental results 
demonstrated that the proposed nonlinear registration 
algorithm is able to correct large distortion in the EPI and 
diffusion weighted images (DWI) while preserving the 
topology of brain structure.  
 
Index Terms— Image registration, Magnetic resonance 
imaging. 
 

1. INTRODUCTION 
 
Advanced MRI techniques such as diffusion tensor imaging 
and functional MRI require fast imaging sequences such as 
EPI. However, these fast sequences are very susceptible to 
local magnetic field inhomogeneities that cause significant 
geometrical distortion, which must be corrected for a 
meaningful interpretation of the data [9]. Earlier efforts to 
correct these distortions mainly focused on modifying the 
image acquisition schemes  such as using spatially-tailored 
pulse sequences [1, 13] and  utilize deformation maps 
obtained from phantom images [4, 7]. More recent studies 
on distortion correction are based on nonlinear image 
registration of the EPI images to anatomical MR images 
acquired using slow imaging sequences [2, 6, 8, 11]. One of 
the more recent reports on EPI distortion correction used the 
optical flow based nonlinear registration method [2]. Since 
EPI images suffer from local distortions, global measures 
for evaluating the quality of registration may be 
inappropriate.  
In these studies we will employ a variant of Demon’s 
algorithm [10] by dense mapping and with an improved 
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method for voxel adaptive regularization. We present an 
improved bijectivity scheme to gurantee invertability of the 
nonlinear registration that performs better than Demon’s 
original bijectivity strategy [12]. Elastic constraint driven by 
local correlation ratio (LCR) is developed to spatially adjust 
the strength of elasticity. The performance of the 
registration algorithm under different elastic constraints is 
carefully investigated. We have developed metrics for 
quantitative evaluation of the performance of the distortion 
correction algorithm. These metrics are based on the feature 
point (image contour) extracted from the EPI and FSE 
images. 
 

2. METHOD 
 
2.1. Viscoelastic Nonlinear Registration 
 
Given two image volumes, a target volume I and a source 
volume J, we want to determine the deformation T: J I . 

 is represented by the displacement field for each 
voxel p of the target image such that T(p) = p + U(p). 
Therefore, a voxel p with intensity I(p) in the target image 
corresponds to a point T(p) with intensity J(p+U(p)) in the 
source image. J(p+U(p)) is denoted by 

T ( )U p

( )( )J U p . The cost 
function is then given as [ 10]: 
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where the first term is the similarity measure based on sum 
of squared difference (SSD), the second term is a term for 
viscous regularization and the third term is for elastic 
regularization. In Equation (1), 1-c(x,y,z) denotes the 
strength of the viscous constraint, s(x,y,z) denotes the 

strength of the elastic constraint, and 
U
t

 denotes the 

correction field. The constants  and  control the balance. 
The first term is minimized by gradient descent and the 
regularization terms (terms 2 and 3) are minimized 
separately through diffusion process that can be solved 
efficiently by the Additive Operator Scheme (AOS) [14]. 
Composite strategy is used to update the displacement field 
for correcting large deformations [10]. 
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2.2. Improved Bijectivity Scheme for Consistent 
Registration  
 
To keep the topology of brain during the deformation, the 
transform must be consistent or bijective to guarantee the 
invertability. The bijectivity scheme used in the original 
Demon’s algorithm is to iteratively estimate the forward 
transformation T12 on the grid point of image I, reverse 
transformation T21 on the grid points of image J, and 
residual transformation R on the grid points of image I by 
composing the transformation T12 and float transformation 
T21. Half of the residual is added to the forward deformation 
field and half of the residual is mapped through the 
backward deformation to the grid points of image J by 
interpolating the residual field R and add to the backward 
transformation T21.  
Instead of calculating the residual field for a single image 
and mapping it to another image, we also calculated the 
residual field  on the grid points of image J using the 
same idea for calculating the residual field R.  This strategy 
would avoid error propagation in mapping R back to the 
grid point on another image.  

'R

 
2.3. Voxel Level Adaptive Regularization:  
 
Most of the techniques proposed so far for non-rigid 
registration uniformly impose constraints over the entire 
image domain or impose elastic constraint by the tissue 
types. The deformation field for registering EPI and FSE 
images should vary spatially based on the local magnetic 
field gradients and not on the tissue type. We address this 
spatially varying elastic constraint by calculating the local 
correlation map between the source image and the target 
image, and use the local correlation value as the elastic 
constraint  for each voxel. This local correlation 
map driven elastic constraint method should be able to 
register any intra-subject registration with large local 
distortion. For improved computational efficiency, we 
calculated the local correlation ratio using a Gaussian 
window instead of a hard block [3].  

( , , )s x y z

 
 

3. QUANTITATIVE METRICS BASED ON THE 
CLOSEST POINT DISTANCES: 

 
We developed quantitative metrics based on the distances of 
the closest points between the image pair to evaluate the 
registration results. The performance of our nonlinear 
registration algorithm is evaluated from two aspects: 1) 
forward similarity metric that measures the similarity 
between the deformed source image (EPI) and the target 
image (FSE), and 2) inverse consistency metric that 

measures the similarity between the source image and 
inverse deformation of the deformed source image. The 
inverse deformation is calculated explicitly by the iterative 
method proposed by Chirsten [5]. 
Feature points in the target image (FSE) are defined by 

, where  is the number of contour points in the 
target image. Feature points in deformed source image are 
defined as , where  is the number of contour 

points in the deformed source image. For each point
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21:{ }j j Ny 2N

ix , we 
find the point 
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point ix  in
21:{ }j j Ny . We then compute the 

distances , where 1: 1{ }i i Nd i i cd x y i  are defined on the 
target image to measure the forward similarity between the 
target image and the deformed source image. The closest 
point distances defined on the source image can be used to 
obtain the similarity between the source image and inverse 
deformation of deformed source image to measure the 
inverse consistency. 
We tested the performance of our algorithm on EPI, FSE, 
diffusion weighted images acquired on ten normal subjects. 
All images were acquired on a 3T Philips scanner. The 
effect of proposed bijectivity scheme and the role of elastic 
constraint on registration were evaluated by comparing the 
registration results with and without bijectivity scheme 
under different levels of uniformly elastic strength varying 
from 0 to 1. The viscoelastic registration algorithm with 
bijectivity scheme and elastic constraint driven by local 
correlation ratio was also tested. The performance of our 
registration algorithms is compared with the results obtained 
with the freely available image registration tool AIR 5.2 
with 30 parameters 2nd order 3D model and 1365 parameters 
12th order 3D model [15].  
 
 

4. RESULTS 
 
Figure 1 shows the evaluation results obtained on ten 
subjects for both forward similarity (Fig. 1a) and backward 
inverse consistency (Fig. 1b) metrics. The mean value of di  
was used to measure the similarity. The points and error 
bars in these plots represent the mean and standard 
deviation over all the ten subjects. As seen in Figure 1a, the 
forward similarity metric consistently shows that all the 
viscoelastic registration methods produced lower mean 
value of  compared to the 2id nd order and the 12th order 
AIR. The AIR algorithm using 1365 parameters produced 
higher forward similarity metric than the AIR algorithm 
using only 30 parameters. The performance of the 
Viscoelastic registration with bijectivity scheme provided 
superior results compared to the corresponding methods 
without bijectivity scheme, not only on forward similarity 
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metrics (Fig. 1a), but also on the backward inverse 
consistency metrics(Fig. 1b). 

  

 
Figure 1: Comparison of the forward similarity (a) and the 
inverse consistency (b) of nonlinear registration algorithms, 
Solid blue: AIR 2nd order of 3D nonlinear model with 30 
parameters; Dashed blue:  AIR 12th order 3D nonlinear model 
with 1365 parameters, Red: Viscoelastic registration without 
bijective scheme; Green: Viscoelastic registration with 
bijective scheme; Black: Viscoelastic registration with bijective 
scheme. The results are based on the mean value of di on ten 
subjects. The standard deviation in Figure 1 (a) is rescaled to 
1/3 for visual clarity. 
 
Viscoelastic registration with bijectivity scheme and with 
local correlation ratio driven elastic constraint produced 
registration results with higher forward similarity than all 
the other methods. These results also demonstrate that 
values of inverse consistency metrics approach the value of 
bijective registration method when the elastic strength 
closes to one. 
The distortion correction results produced by the 
viscoelastic registration algorithm with bijectivity scheme 
and elastic constraint driven by LCR and AIR (12th order 
3D model) are visually compared by superimposing the 
contour of the FSE image on the corresponding EPI image. 

Figure 2 shows the registration results of selected slices 
where the distortions (particularly the frontal and temporal 
lobes) are large. As can be seen from this figure, AIR 
produced poor registration result at both selected slices. At 

the front lobes of the brain where the distortions are large, 
our algorithm performed very well while AIR only 
marginally reduced the distortions.  

  
Figure 2: Visual evaluation the performance of the distortion 
correction on the single shot EPI images at the level of 
temporal lobes (top) and lateral ventricles (bottom). The FSE 
images along with contours are shown in (A).  Superposition of 
contours on (B) distortion corrected EPI images using our 
algorithm, (C) corrected EPI image with AIR 12th order 
nonlinear 3D model with 1365 parameter and (D) the original 
uncorrected EPI image. The slice thickness of the images is 3 
mm.  

 

 
Figure 3: Visual evaluation of correction on diffusion weighted 
EPI images acquired at two levels of brain with  

. (A) DWI (with diffusion gradient along 
anterior-posterior direction) after distortion correction, (B) 
before distortion correction, (C) DWI (with gradient direction 
along left-right direction) after distortion correction, and (D) 
before distortion correction. 

21000 /b s mm

 
We applied our technique to correct for the geometric 
distortions due to the gradient induced eddy currents in 
DWI. Figure 3 shows the selected slices of DWI. Based on 
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these images, the proposed algorithm corrected the large 
distortion seen in DWI also. 

 
5. CONCLUSIONS 

 
In this paper, we implemented a nonlinear registration 
algorithm to correct the geometric distortions in EPI images 
by registering to anatomical FSE images. The consistency 
of the registration is enforced by an improved bijectivity 
scheme. We also used local correlation ratio to drive the 
elastic constraint for adaptively adjusting the elastic 
constraint. The role of elastic strength and bijectivity 
scheme in nonlinear registration is also investigated. 
Metrics based on the closest point distances are developed 
to quantitatively evaluate the performance of our nonlinear 
registration algorithm. The quantitative metrics are used not 
only to quantify the quality of the registration in term of 
forward similarity-similarity between the target image and 
the deformed source image but also used to measure the 
inverse consistency of the registration. The proposed 
metrics concentrate only on the structures of the image thus 
we believe our proposed metrics can provide more 
meaningful evaluation compared to other currently used. 
Both quantitative analysis and visual inspection results 
demonstrate the proposed LCR driven elastic registration 
algorithm with bijectivity scheme produced the best 
registration results. 
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