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ABSTRACT

Fluorescence microscopy images are contaminated by photon

and readout noises, and hence can be described by Mixed-

Poisson-Gaussian (MPG) processes. In this paper, a new vari-

ance stabilizing transform (VST) is designed to convert a fil-

tered MPG process into a near Gaussian process with a con-

stant variance. This VST is then combined with the isotropic

undecimated wavelet transform leading to a multiscale VST

(MS-VST). We demonstrate the usefulness of MS-VST for

image denoising and spot detection in fluorescence microscopy.

In the first case, we detect significant Gaussianized wavelet

coefficients under the control of a false discovery rate. A

sparsity-driven iterative scheme is proposed to properly re-

construct the final estimate. In the second case, we show

that the MS-VST can also lead to a fluorescent-spot detec-

tor, where the false positive rate of the detection in pure noise

can be controlled. Experiments show that the MS-VST ap-

proach outperforms the generalized Anscombe transform in

denoising, and that the detection scheme allows efficient spot

extraction from complex background.

Index Terms— variance stabilizing transform, Mixed-Pois-

son-Gaussian process, wavelet, fluorescence microscopy

1. INTRODUCTION

Fluorescence microscopy is a widely used technique to image

biological specimens. The resulting images are corrupted by

photon and camera readout noises. The stochastic data model

is thus a Mixed-Poisson-Gaussian (MPG) process. For many

applications such as denoising and deconvolution, it would be

rather complicated to directly deal with such processes since

every sample exhibits an infinite Gaussian mixture distribu-

tion. A commonly used technique is to first apply a variance

stabilizing transform (VST), e.g., the generalized Anscombe

transform (GAT) [1], to Gaussianize the data so that each

sample is near-normally distributed with an asymptotically

constant variance. The VST allows to apply standard de-

noising and deconvolution methods on the transformed data.
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Then, the final estimate is obtained by inverting the VST on

the processed data.

In this paper, we propose a new VST to Gaussianize a

low-pass filtered MPG process. This transform can be con-

sidered as a generalization of the GAT and a recently pro-

posed VST for Poisson data [2]. Then, this VST is combined

with the isotropic undecimated wavelet transform (IUWT) [1]

leading to a multiscale VST (MS-VST). The usefulness of

MS-VST is demonstrated for image denoising and spot de-

tection in fluorescence microscopy. In the first case, we de-

tect significant Gaussianized wavelet coefficients under the

control of a false discovery rate (FDR) [3]. A sparsity-driven

iterative scheme is proposed to properly reconstruct the final

estimate. In the second case, we show that a slight modifi-

cation of the denoising algorithm leads to a fluorescent-spot

detector, where the false positive rate of the detection in pure

noise can be controlled. Experiments show that the MS-VST

approach outperforms the GAT in denoising, and that the pro-

posed detection scheme allows efficient spot extraction from

complex background.

2. VST FOR A FILTERED MPG PROCESS

A MPG process x := (Xi)i∈Zd is defined as:

Xi = αUi + Vi, Ui ∼ P(λi), Vi ∼ N (μ, σ
2) (1)

where α > 0 is the overall gain of the detector, Ui is a Poisson

variable modeling the photon counting, Vi is a normal vari-

able representing the readout noise, and all (Ui)i and (Vi)i

are assumed mutually independent. Given a discrete filter h,

we note a filtered MPG process as Yi :=
∑

j h[j]Xi−j . We

will use X and Y to denote any one of Xi and Yi respectively.

We further denote by τk the quantity
∑

i(h[i])k for k ∈ N
∗.

To simplify the following analysis we assume that λi = λ
within the support of h. It can be verified that the variance
of Y (Var [Y ]) is an affine function of the Poisson intensity
λ. To stabilize Var [Y ], we seek a transformation Z := T (Y )
such that Var [Z] is (asymptotically) constant, irrespective of
the value of λ. We define:

T (Y ) := b · sgn(Y + c)|Y + c|1/2
, b �= 0, c ∈ R (2)
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Lemma 1 indicates that the square-root transform (2) is in-

deed a VST for stabilizing and Gaussianizing a low-pass fil-

tered MPG process.

Lemma 1 (square root as VST [4]) If τ1 �= 0, then we have:

T (Y ) − b · sgn(τ1)
√

|τ1|αλ
D−→

λ→+∞
N

(
0,

αb2τ2

4|τ1|
)

(3)

This result holds for any c ∈ R. However, the convergence

rate in (3) varies with the value of c (b is only a normalizing

factor), and we want to determine its optimal value.

2.1. Optimal parameter of the VST

Without loss of generality, suppose that τ1 > 0, then Pr(Y +
c > 0) can be made arbitrarily close to 1 as λ → +∞. So
in our asymptotic analysis below, we will essentially consider

the VST in the form T (Y ) = bT0(Y ) = b
√

Y + c. Expand-
ing T0(Y ) by Taylor series about the point Y = E [Y ] up to
the 4th order term, and by applying the expectation one can
calculate the asymptotic expectation and variance of T (Y ):

E [b1T0] ≈
√

λ +
4τ1(τ1μ + c) − τ2α

8τ2
1 α︸ ︷︷ ︸

CE

λ
−1/2

(4)

Var [b2T0] ≈ 1+

8τ2
1 τ2(σ

2 − αμ) − 4τ1α(2τ2c + τ3α) + 7τ2
2 α2

8α2τ2
1 τ2︸ ︷︷ ︸

CVar

λ
−1

(5)

where b1 = (τ1α)−
1

2 and b2 = 2( τ1

ατ2

)
1

2 . These settings nor-

malize respectively the asymptotic expectation and variance

to
√

λ and 1, both values being independent of the filter h.
Then the optimal c is found by minimizing the following bias-
variance tradeoff (controlled by η):

c
∗ := arg min

c∈R

Eη(c) := ηC
2
E + (1 − η)|CVar|, η ∈ [0, 1] (6)

With no prior preference for either bias or variance, η can

be set to 1/2. Note that CE is squared to give an equivalent

asymptotic rate for the tradeoff terms in (4) and (5). It can be

shown that (6) admits a unique solution, which can be explic-

itly derived out as a function of τk, μ, σ, α and η. This VST

reduces to the GAT if h = Dirac filter δ and η = 0.

In practice, if μ, σ, and α are unknown a priori, they can

be estimated by matching the first four cumulants of X with

the k-statistics [5] of the samples in a uniform image region.

This follows from the property that the k-statistics are the

minimum variance unbiased estimators for cumulants.

3. IMAGE DENOISING USING MS-VST

Isotropic structures are often presented in biological fluores-
cent images due to micrometric subcellular sources. Toward
the goal of image denoising, we will combine the proposed
VST with the IUWT. Indeed, since IUWT uses isotropic filter

banks, this transform adapts very well the isotropic features in
images. The left side of (7) gives the classical IUWT decom-
position scheme, and by applying the VST on the (low-pass
filtered) approximation coefficients at each scale, we obtain a
MS-VST scheme shown on the right side:{

aj = h̄↑j−1 � aj−1

dj = aj−1 − aj
⇒

{
aj = h̄↑j−1 � aj−1

dj = Tj−1(aj−1) − Tj(aj)
(7)

Here h is a symmetric low-pass filter, aj and dj are respec-
tively the approximation and the wavelet coefficients at scale
j (≤ J), h↑k[l] = h[l] if l/2k ∈ Z and 0 otherwise, h̄[n] =
h[−n] and “�” denotes convolution. The filtering of aj−1 can
be rewritten as a filtering of the original MPG data x ≡ a0,

i.e., aj = h(j) � a0, where h(j) = h̄↑j−1 � · · · � h̄↑1 � h̄ for

j ≥ 1 and h(0) = δ. Tj is the VST operator at scale j (cf.
(2)):

Tj(aj) = b
(j)

sgn(aj + c
(j))|aj + c

(j)|1/2

The constants b(j) and c(j) are associated to h(j), and c(j)

should be set to c∗. Theorem 1 shows that (7) transfers the

asymptotic stabilized Gaussianity of the aj’s to the dj’s:

Theorem 1 (dj under a high intensity assumption) Setting

b(j) := sgn(τ
(j)
1 )/[α|τ (j)

1 |]1/2, we have:

dj
D−→

λ→+∞
N

(
0,

τ
(j−1)
2

4τ
(j−1)
1

2 +
τ

(j)
2

4τ
(j)
1

2 − 〈h(j−1), h(j)〉
2τ

(j−1)
1 τ

(j)
1

)

where τ
(j)
k :=

∑
i

(
h(j)[i]

)k
, and 〈·, ·〉 denotes inner product.

This result shows that the asymptotic variance of dj depends

only on the wavelet filter bank and the current scale, and thus

can be pre-computed once h is chosen.

3.1. Detection of significant coefficients by FDR

Wavelet denoising can be achieved by zeroing the insignif-

icant coefficients while preserving the significant ones. We

detect the significant coefficients by testing binary hypothe-

sis: ∀ d, H0 : d = 0 vs. H1 : d �= 0. The distribution of d
under the null hypothesis H0 is given in Theorem 1. Thus, a

multiple hypothesis testing controlling the FDR can be carried

out [3]. The control of FDR offers many advantages over the

classical Bonferroni control of the Family-Wise Error Rate,

i.e., the probability of erroneously rejecting even one of the

true null hypothesis. For example, FDR usually has a greater

detection power and can handle correlated data easily. The

latter point is important since the IUWT is over-complete.

3.2. Sparsity-driven iterative reconstruction

After coefficient detection, we could invert the MS-VST (7) to

get the final estimate: â0 = T−1
0 [TJ (aJ)+

∑J
j=1 dj ], but this

solution is far from optimal. Indeed, due to the non-linearity

of the VST and the over-completeness of IUWT, the signifi-

cant coefficients are not reproducible when IUWT is applied

once more on this direct inverse, implying a loss of impor-

tant structures in the estimation. A better way is to find a
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constrained sparsest solution, as sketched below (see [4] for

details).
We first define the multi-resolution support [1] M :=

{(j, l) | dj [l] is significant}, which is determined by the set
of the detected significant coefficients. The estimation is then
formulated as a constrained convex optimization problem in
terms of wavelet coefficients:

min
d∈C

J(d) := ‖d‖1 where C := S1 ∩ S2

S1 := {d|d = Wx in M} and S2 := {d|Rd ≥ μ} (8)

where W is the wavelet analysis operator, and R its synthe-

sis operator. Clearly by doing so, we minimize a sparsity-

promoting 	1 objective function [6] within the feasible set

C := S1 ∩ S2. The set S1 requires that the elements of d pre-

serve the significant coefficients; the set S2 assures a model-

consistent estimate since E [Xi] = αλi + μ ≥ μ.
Gradient descent method such as the hybrid steepest de-

scent (HSD) iterations [7] can be used to solve (8):

d
(k+1) := TCd

(k) − βk+1sgn
(
TCd

(k)
)

(9)

where the step length βk satisfies: (i) limk→∞ βk = 0, (ii)∑
k≥1 βk = +∞, (iii)

∑
k≥1 |βk − βk+1| < +∞. The oper-

ator TC is defined as TC := PS1
◦ QS2

, and

PS1
d :=

{
Wx in M
d otherwise

; QS2
d := WPμRd (10)

where Pμ is the projector onto the set {x|xi ≥ μ}. It is worth

noting that compared with the direct reconstruction, every it-

eration of (9) involves a projection onto the set S1 that restores

all the significant coefficients. Therefore, important structures

are better preserved by the iteratively reconstructed solution.

3.3. Results

We first test our denoising approach on a simulated 18 × 10
isotropic-source grid (pixel size = 100 nm) shown in Fig. 1.

From the leftmost to the rightmost column, the source radii in-

crease from 50 nm to 350 nm. The image is then convolved by

a 2D Gaussian function with a standard deviation σg = 116
nm, which approximates the point spread function of a typi-

cal fluorescence microscope [8]. Fig. 1(a) shows the sources

with amplitudes λA ∈ [0.05, 50]. After adding a MPG noise,

we obtain Fig. 1(b). Fig. 1(c) and (d) respectively show the

denoising examples using the GAT and the MS-VST. More

faint sources are restored by the MS-VST approach, showing

its higher sensitivity. In terms of the mean 	1-loss per bin, i.e.,

ε̄ := E[ 1
n‖â0−E[a0]‖�1 ] where n is the number of pixels, the

MS-VST denoising is more accurate (ε̄ = 1.75) than the GAT

(ε̄ = 1.94), where ε̄ is computed based on 100 replications.

Fig. 2(a) and (b) show two optical slices of a 3D confo-

cal image of a drosophila melanogaster ovary. The part of

nurse cells consist of many nucleus with Green-Fluorescent-

Protein-marked Staufen genes. The slices of the denoised im-

age are shown in Fig. 2(c) and (d). We can see clearly that

(a) (b)

(c) (d)

Fig. 1. Simulated source denoising. h = 2D B3-Spline filter, FDR

= 0.01, J = 5 and 10 iterations. (a) simulated sources (amplitudes

λA ∈ [0.05, 50]; background = 0.05); (b) MPG noisy image (α =

20, μ = 10, and σ = 1); (c) GAT-denoised image, ε̄ = 1.94; (d)

MS-VST-denoised image (η = 0.5), ε̄ = 1.75

the cytoplasm (homogeneous areas) is well smoothed and the

gene signals are restored from the noise.

4. SPOT DETECTION USING MS-VST

The MS-VST also allows us to construct a fluorescent-spot

detector. Indeed, since wavelets are band-pass filters, back-

ground information is mostly encoded in the approximation

band. Now, suppose that we have obtained M by the same

detection procedure as in the denoising case. Then, if we take

the wavelet transform of a0, zero both the insignificant coef-

ficients (by referring to M) and the approximation band, and

reconstruct the image, the background will be largely sup-

pressed from the final estimate and, consequently, only detail

(spot) structures are retained. Finally, we binarize the result

by thresholding the negative pixels to zero, and then extract

all connected components as putative bright spots. With this

approach, if the FDR of the wavelet coefficient detection is

upper bounded by γ, the probability of erroneously detecting

spots in a spot-free homogeneous MPG noise (λi = λ) is also

upper bounded by γ.

4.1. Results

Fig. 3 shows the detection of endocytic vesicles of COS-7

cells in a wide-field microscopy image. Although the original
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(a) (b)

(c) (d)

Fig. 2. Denoising of a 3D confocal image of a drosophila

melanogaster ovary. h = 3D B3-Spline filter, FDR = 0.01, η = 0.5,

J = 4, and 10 iterations. Observed image: (a) z = 22μm;

(b) z = 26μm; MS-VST-denoised image: (c) z = 22μm; (d)

z = 26μm.

image exhibits a highly nonuniform background (Fig. 3(a)),

the detection (Fig. 3(b)) is very effective as most spots are

well extracted while the background is canceled.

5. CONCLUSION

We have designed a VST to stabilize and Gaussianize a low-

pass filtered MPG process. The VST is then combined with

the IUWT yielding the MS-VST. We have shown the MS-

VST approach to be very effective in fluorescent image de-

noising and spot detection. Our future work will apply the

MS-VST in deconvolution and super-resolution detection.
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