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ABSTRACT

This work deals with the problem of shape registration. Broadly
speaking, the problem is that of establishing point-wise correspon-
dences in two different shapes of arbitrary dimension and topology.
This problem is a fundamental component in numerous image and
vision applications. We propose a variational framework for a dense
global-to-local 2D shape registration. Affine transformations are ac-
counted for using Vector Distance Functions. Based on this repre-
sentation, a dissimilarity measure between the two shapes is mini-
mized to recover the global matching parameters. The local coordi-
nate transformation between the two shapes is explicitly estimated
by solving a regularized non-linear PDE-based motion model. Vari-
ous experimental results are presented and discussed to show the po-
tential of the proposed framework with a finite element (FE)-based
validation of its performance.

Index Terms— Shape Registration, Active Contours, Implicit
Representations, Regularization.

1. INTRODUCTION

Shape registration is a fundamental problem in computer vision, and
an important component in various medical applications. Recog-
nition, tracking and retrieval are some other examples of applica-
tions that may benefit from shape registration. Shape registration
approaches can be categorized based on three main aspects: the se-
lected model to represent the shapes, the transformation model, and
the mathematical framework chosen to recover the registration pa-
rameters. The selection of shape representation model affects greatly
the performance of any existing shape registration algorithm. In [1],
the authors choose to represent the shapes to be registered as the
zero level sets of distance functions in a higher dimensional space.
This implicit representation is known to be invariant to translations
and rotations, and performs well in the case of homogeneous scales.
To account for anisotropic scales, the authors proposed to maximize
an information based criterion between the two shapes, namely the
mutual information (MI). Hong et al. [2] proposed a new shape rep-
resentation method and showed its potential in image matching and
segmentation. This new algorithm is based on integral kernels and
represents a shape as the area of intersection between the kernel and
the inside and outside of the shape. Other methods have been con-
sidered to represent shapes in different application, including cloud
points [3], medial axis [4] and Fourier descriptors [5].
Transformation models can be divided into two classes: global

and local. The global transformation models are usually defined by
a small set of parameters. These models include, among others, the
rigid transformation (translations and rotations), and the affine trans-
formations, which in addition to translations and rotations, account
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for anisotropic scaling and/or shearing. Such transformations can
be used alone to efficiently align two shapes. However, in the case
of local deformations, more complex transformations are required
in order to establish dense correspondences between the two given
shapes. Different techniques were developed to solve this problem,
including the optical flow [6], the incremental free form deforma-
tion [1], the thin plate spline [7].
Given the transformation model and the selected shape representa-
tion model, most existing shape registration techniques are based on
the optimization of a similarity/dissimilarity criterion between the
two shape. For instance, the Sum of Squared Differences (SSD) be-
tween the data values is one popular criterion that is mostly appro-
priate when the two data sets have comparable values (e.g., mono-
modal images), while the MI is a stochastic measure that is more
appropriate to register images with different modalities or matching
shapes under scale variations. The estimation of a dense displace-
ment field by optimization of any of these criteria is an ill-posed
problem in the sense of Hadamard. To cope with this issue, other
constraints are to be introduced to guarantee the well posedeness of
the problem. These constraints are usually added to the cost function
as a regularization term using physically based functionals relying
on elasticity theory [8, 9].
A different approach for solving the non-rigid registration prob-

lem is based on active contours formulation. This approach was in-
dependently adopted by Vemuri et al. [10] for image registration, and
by Bertamio et al. [11] for image segmentation and tracking. It is this
variational framework that we consider, in part, in this paper in or-
der to locally match shapes. The shapes are first globally aligned by
minimizing a SSD criterion measuring the disparity between the two
implicit representations of the source and target shapes using vector
distance functions. This shape representation leads to better results
in the presence of scale variations. We test this criterion to glob-
ally register various 2D shapes, and we compare the results to those
obtained when using a rigid registration criterion based on Signed
Distance (SD) representation as used in [12]. Secondly, the aligned
shapes are implicitly represented using their SD maps and then we
let the level sets of the SD of the warped source shape evolve to-
wards those of the target shape under some constraints borrowed
from elasticity theory. This allows to establish a dense one-to-one
displacement field between the shapes. Various experimental results
are presented to show the potential of the proposed framework. Cor-
relation coefficients are computed as a measure of the alignment ac-
curacy. Finally, we propose a FE-based approach to quantitatively
validate the non-rigid alignment model.

2. VECTOR DISTANCE FUNCTION AND GLOBAL
ALIGNMENT

Vector Distance Functions (VDF) were proposed in [13] as an ef-
ficient way of representing shapes, and they have been popular in

VI - 2371-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007



various image analysis applications. Given a manifoldM in R
n,

(n = 2, 3), let δ(x) := dist(x,M) denote the Euclidean dis-
tance from a point x ∈ R

n to M, The vector distance function
V (x) is given as the derivative of the squared distance function
η(x) := 1

2
δ2(x). That is, V (x) := ∇η(x) = δ(x)∇δ(x). The

VDF V (x) is an implicit representation of the manifoldM, with
M = V −1(0), and for each x ∈ R

n, V (x) is a vector of length
δ(x). If M is smooth at x, then the VDF to M at x is given
by (see [2] for more details) V (x) = x − x0, with x0 being the
closet point to x onM. An example of the VDF representation is
shown on Figure 1(cols. 3 & 4).

Fig. 1. Left to Right: Shape Contour; The signed distance representation;
The x- and y-components of the VDF representation.

2.1. Global Matching

Now, let us consider a source shape, S1, and a target shape, S2, with
corresponding VDF representations, respectively noted by V1 and
V2. Let A(x) = SRx + T denote a global transformation on R

n,
where S = diag(si)1≤i≤n is a diagonal matrix whose entries are
the scale factors in each direction; R = R(θ) a rotation matrix; and
T is a translation vector inR

n. Given an image point x on the source
shape, and its VDF transform, x0 = V1(x), and its transform by A,
x̂ = A(x), one can easily show that

V2(x̂)) = x̂− x̂0 = SR(x− x0) = SRV1(x).

Based on this property of the VDF under affine transformations, we
can consider the following SSD criterion to recover the global match-
ing parameters that serve to align the shapes S1 and S2:

E(S, R,T ) =

∫
Ω

r
T
.rdx, with r(x) = SRV1(x)− V2(A(x)),

(1)
where Ω is the image domain of the two shapes. The functional
E measures the dissimilarity between the VDF values of the two
shapes. Minimizing this energy on the entire image domain in com-
putationally expensive. Hence, we limit the matching space to a band
around the zero level of the VDFs. This leads to minimizing

E(S, R,T ) =

∫
Ω

δα(V1(x), V2(A(x))).rT (x).r(x)dx, (2)

where δα is an indicator function given by

δα(a,b) =

{
0, if min(‖a‖, ‖b‖) > α,

1, if min(‖a‖, ‖b‖) ≤ α.

Each parameter p ∈ {s′is, θ, T ′i s} of the transformation A is recov-
ered by solving the following evolution equation using a gradient
descent scheme:
dp

dt
= −2

∫
Ω

δαr
T [∇p(SR)V1(x)−∇V

T
2 (A(x))∇pA(x)]dx. (3)

We tested this method on various 2D shapes as shown on Fig. 2, and
we compared the results to those corresponding to the rigid match-
ing, based on the signed distance representation as presented in [12].
It is clear from this figures that the VDF representation leads to bet-
ter results since it accounts for anisotropic scales. A similar idea was
previously used in [14].

3. LOCAL ALIGNMENT

In many applications, particularly in medical imaging, the global
matching has to be completed by dense one-to-one correspondences
in the presence of local deformations [15]. In this paper, we propose
a new variational framework to recover dense local displacement
field between the two globally aligned shapes. First, the globally
aligned shapes are implicitly represented through their respective
signed distance maps. Then, a dense local displacement field is ex-
plicitly recovered at each image point by solving a regularized non-
linear PDE-based motion model. The active contour model adopted
in [10] for mono-modal image registration is used in this work as
prototype for the proposed non-rigid matching model of shapes.

3.1. Implicit Shape Representation Using Distance Map

Let S denote an imaged shape in R
n which defines a partition of the

image domain Ω into the region enclosed by S, ΩS , and its comple-
mentary in Ω, Ω\ΩS . The shape S can be implicitly represented by
the following distance transform φS : ΩS → R

+

φS(x) =

⎧⎪⎨
⎪⎩

0, if x ∈ S,

+dist(x, S), if x ∈ ΩS ,

−dist(x, S), if x ∈ Ω\ΩS ,

(4)

where again, dist(x, S) refers to the min Euclidean distance be-
tween an image point x and the shape S. An example of such repre-
sentation is shown on the 2nd column of Fig. 1.

4. BASIC CURVE EVOLUTION

In this section, we present a brief overview of the planar curve
evolution technique and its level set formulation. Let C(p, t) :
R × [0, T ) → R

2 denote a family of closed planar curves. As-
sume these curves deform in time according to the following general
evolution equation:

∂C

∂t
= βN, with C(p, t0) = C0(p), (5)

where, β is the normal component of the velocity, and N the inward
unit normal to C(p, t). Now let C(p, t) be represented by the zero
level set of a function u : R

2× [0, T )→ R. That is, C(p, t) satisfies
u(C, t) = 0. Differentiating this equation leads to the following
level set representation of the flow:

∂u

∂t
= F‖∇u‖, F : Speed Function (6)

This equation offers many advantages, such as the handling of topo-
logical changes [16].

4.1. Proposed Local Matching Formulation

We consider the 2D case in order to facilitate the presentation. Given
are two shapes, a source S1 and a target S2. First, the source shape
is globally aligned with S2 according to a global transformation
model A recovered as explained in section 2.1. Let Ŝ1 = A(S1)
denote the globally aligned source shape. To complement the global
matching model, we should recover a pixel-wise displacement field
u = [u1, u2]

T : R
2 → R

2 that establishes correspondences be-
tween the aligned source shape Ŝ1 and S2. To this end, let φ̂1 and
φ2 be the implicit distance map representations of Ŝ1 and S2, respec-
tively. We use the following evolution model to explicitly determine
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(a)

(b)

(c)

Fig. 2. Affine vs. rigid registration. (a) Initial Conditions. (b) Rigid registration using the SSD criterion in [12]. (c) Affine matching based on the VDF
representation (Eq. (2)). Note how the use of the VDF representation leads to better alignments thanks to the fact of accurately taking into account anisotropic
scales.

the geometric transformation between the two implicit representa-
tions, where we denote by g = Id + u the geometric deformation

∂u

∂t
= (φ̂1(x)− φ2(g(x))

∇φ2(g(x))

‖∇φ2(g(x))‖
, u(x, 0) = 0. (7)

In order to retain the regularity of the recovered displacement field,
we add a regularization term to the evolutive model (Eq. (7)). This
leads to solving the following regularized motion model in order to
recover u:

∂u

∂t
= (φ̂1(x)−φ2(g(x)))

∇φ2(g(x))

‖ ∇φ2(g(x)) ‖
+R(u), u(x, 0) = 0,

(8)
where R(u) = αΔu + βu, with α and β two tuning coefficients
balancing the contribution of each term. The well-posedeness of this
model will be addressed in future works. We used the ”minmod finite
difference” [17] to implement the evolution model whereas standard
difference scheme is used to implement the regularization term. The
time step is updated at each iteration according to theCFL condition.

5. EXPERIMENTAL RESULTS

To demonstrate the potential of our global-to-local registration
framework, we tested it on various 2D shapes as depicted on Fig. 3.

Table 1. Correlation Coefficient For our Global-To-Local Registra-
tion Framework.

Correlation Coefficient
Input After Global After Local
Shapes Alignment Alignment

Ventricle 0.844506 0.952450 0.999214
Corpus Callosum 0.674487 0.946637 0.998453

Bunny 0.399598 0.946758 0.998817
Fish 0.530617 0.936664 0.997603

The source and target shapes are first globally aligned using the
VDF-based global alignment approach (see Sec. 2.1). The local

(a) (b) (c) (d)

Fig. 3. Proposed Registration Framework. (a) Initial positions of the source
shape (blue) and target (red); (b) Global alignment using the VDF-based SSD
measure (Eq. (2)); (c) Established shape correspondences after local match-
ing; (d) Space warping with globally deformed source (blue), locally de-
formed source (green), and target (red).

transformation coordinate between these two aligned shapes is ex-
plicitly recovered by solving the evolution equation (8). Figures 3(c)
depict the overlay of the target shape and the source shape after
global and local alignments. Visually, one can notice from these fig-
ures the ability of our framework to cope with very large non-linear
deformations.
To quantitatively demonstrate the accuracy of our approach, we

computed the correlation coefficient between the original shapes,
as well as that between the target shape and the source shape af-
ter global and local alignments. To this end, we implicitly represent
each shape by its distance map which we transform to a gray value
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image. The obtained results are summarized in table 1. These re-
sults indicate the degree of accuracy of our registration framework.
In the next section we propose a FE-based approach to validate the
non-rigid registration model.

6. FE-BASED VALIDATION APPROACHOF THE
PROPOSED NON-RIGID MATCHING APPROACH

We propose a FE-based approach to build a ground truth pair of
shapes (source and target) in order to validate our non-rigid match-
ing model (8). Given a 2D binary image of the corpus callosum
CC, the Abaqus/CAE (Ver. 6.5) 1 environment was used to gener-
ate a cubic spline fit to the points representing the outer contour of
the CC object and then a 2D F.E. model was built from it. A uni-
formly distributed pressure P = 100N is applied normal to the
boundary of the CC which is modeled as a linear elastic material.
The points on the boundary are allowed to move freely in the x-
and y-directions, but are constrained to rotate around the z direction.
Figures 4(a) show the overlay of the non deformed mesh with the de-
formed one. The average displacement of the induced deformation
is 2.77mm, the min is 1.82mm, and the max is 4.85mm. We match

(1)

(2)
(a) (b)

Fig. 4. (a) Overlayed meshes before (white) and after (green) deformation;
(b) Comparison between 400 node positions on the contour: (red) Ground
truth (Abaqus simulated); (blue) Corresponding positions using our local
non-rigid matching algorithm. (d) Displacement vector field depicting the
space warping.

the simulated deformed shape with the original one using our algo-
rithm, and we compare the results to the FE-simulated ones. The
average matching error is 0.9762mm, with amax = 2.7458mm, a
min = 0.0146mm, and a standard deviation of 0.6815. To illustrate
these results, we present on Fig. 4(b) a typical comparison between
a set of 400 randomly selected F.E. nodes positions and their corre-
sponding recovered positions using our non-rigid matching model.
Figure 4(c) depicts the matching results.

7. CONCLUSION

In this work, we presented a new global-to-local variational frame-
work for 2D shape registration. The global alignment is based on
minimizing a SSD criterion between the VDF representations of the
input shapes. This vectorial representation supports both rigid and
affine transformations. The local displacement field is explicitly re-
covered between the two aligned shapes by solving a regularized
PDE-based model. Various experiments were presented to show the

1http://www.abaqus.com

potential of the proposed framework. This framework is quantita-
tively validated using a FE-based approach. The extension to 3D
case is straightforward and will be addressed in future works. Appli-
cations, such as shape-driven segmentation and tracking, are among
the fields that may benefit from the proposed registration framework.
These applications are subject of our focus.
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