EFFICIENT ACQUISITION AND LEARNING OF
FLUORESCENCE MICROSCOPE DATA MODELS

Charles Jackson', Robert F. Murphy'? and Jelena Kovacevié'?

! Dept. of Biomedical Eng. and Center for Bioimage Informatics,
2 Dept. of Electrical and Computer Eng.,
3 Dept. of Biological Sciences and Dept. of Machine Learning,
Carnegie Mellon University, Pittsburgh, PA, USA

ABSTRACT

We present a method for efficient acquisition of fluorescence micro-
scope datasets, to allow for higher spatial and temporal resolution,
and with less damage from photobleaching. Our proposal is to re-
strict acquisition to regions where we expect to find an object. Given
that the objects are continuously moving, we must have an accurate
model to describe objects’ motion to predict their future locations.
We outline a system for learning and applying this motion model,
provide details from some simple simulations, and summarize re-
sults from more complex applications.

Index Terms— Fluorescence, microscopy, tracking, state space
methods, Monte Carlo methods

1. INTRODUCTION

Fluorescence microscopy is one of the most popular tools for live-
cell imaging. As the trend in biology tends more and more towards
automated systems for high-throughput applications, the amount of
image data acquired with this technique is growing rapidly. To ob-
serve a cellular process over a sustained period, we take a time series
of images, where each image is known as a frame. This paper de-
scribes an efficient way to acquire such images, in which we obtain
the required information without acquiring the entire field of view.

The first motivation for this work is to enhance resolution. In
laser scanning confocal microscopy, images are acquired line-by-
line, pixel-by-pixel [1]. We can achieve significant time savings by
only imaging those regions where we expect to find an object. These
time savings could be then used to increase the frame rate, or to
acquire the selected regions at a higher spatial resolution.

The second motivation is to reduce photobleaching and photo-
toxicity. In fluorescence microscopy, images are acquired by shining
excitation light on the specimen to activate fluorescence. However,
this can damage the fluorescent signal (photobleaching) [2], as well
as the cell itself (phototoxicity) [3], thus limiting the duration over
which we can view a cellular process. By reducing the total area
acquired in each frame, we reduce the overall exposure to excitation
light, hence reducing both photobleaching and phototoxicity.

Although algorithms for efficient image compression or image
enhancement are well studied, efficient acquisition of these images is
not. In [4], the authors designed an algorithm to reduce the number
of pixels sampled in a 2D or 3D image when using a laser scanning
confocal microscope. They observed that a large portion of scanning

This work was supported in part by NSF through grant EF-0331657,
as well as the PA State Tobacco Settlement, Kamlet-Smith Bioinformatics
Grant.

1-4244-1437-7/07/$20.00 ©2007 IEEE

VI - 245

time is spent on low fluorescence regions, which presumably contain
little useful information. The approach is then to begin by scanning
the field at a low resolution. Each scanned value is examined, and
if found to be significant, the area around it is scanned at a higher
resolution. The process is repeated iteratively.

Here, we are studying a large number of tiny moving objects
over a sustained period. To assist with efficient acquisition, we de-
velop and continually refine a model to describe the objects’ motion.
In [5], the authors provide algorithms for modeling objects’ motions
for the purposes of tracking, and although not used directly, their
work helped inspire our approach.

Section 2 outlines the framework used for developing the motion
models, while the acquisition algorithm is described in Section 3.
Section 4 presents a case study of a simple system, while Section 5
outlines some characteristics of more complex models.

2. TRACKING FRAMEWORK

A fundamental part of this work is to learn the motion model for
each object, and thus, here, we describe the framework in which we
do this. We have taken the same approach as used in [5] for object
tracking algorithms.

2.1. State Space Model

The state space model assumes that all the necessary information
about a system can be summarized by a set of state variables. For
a simple case of object tracking, these state variables could be, for
example, the 3D coordinates of the centroids of every object. A
more advanced model could also include the size, shape, type of
every object, etc.

This system is governed by two fundamental state space equa-
tions [6]. Equation (1) describes the present state in terms of the
previous state, and (2) describes the observed variables in terms of
the state variables:

z(t+1)
z(t) =

Equation (1) shows the state at time ¢, z(t), evolving to the state
at time ¢ + 1, z(¢ + 1), as governed by the state transition matrix
F(t). The equation implicitly assumes a linear system, although
a more general form can be used for nonlinear systems. The state
noise v(t) reflects that the model will not perfectly predict the state
transitions.

F()a(t) + v(t), 0
H(b)e(t) + ulb). @

ICIP 2007

Equation (2) maps the state variables x(¢) to the measurement
variables z(t). H(t) is the observation matrix (if H(t) were a diag-
onal matrix then the system would be fully observable), and u(t) is
the measurement noise. Here we assume perfect measurement.

2.2. Application to Motion Modeling

Our method of modeling the objects’ motion follows that of [6], as
described in this section. Learning the motion model of an object is
equivalent to learning F'(¢) and the properties of v/(t) for the object.
Because we assume stationary object dynamics, F'(¢) can be repre-
sented simply as F’, and the state noise has a constant covariance Q.
Every object in the specimen potentially moves under a different mo-
tion model. Therefore, we have state transition matrices F, ..., Fi,
and covariances Q1, ..., Q. for the m objects of interest. Learning
the motion models equates to learning these matrices.

Two restrictions are imposed on the model. The first is that
covariance matrices are diagonal (making each dimension indepen-
dent). The second is that F’ is restricted to one of the three motion
models from [5] to cover most motions observed in practice. These
three models are a random walk, Frw, a first-order linear extrap-
olation, Frr g, and a second-order linear extrapolation, Fisrg, and
require knowledge of the object’s position in up to three successive
frames. Therefore, in 2D, we define the state vector as:

T
wt) =[x Yy Te-1 Y—1 T2 Y2 |
where (z, y:) represent the 2D coordinates of the object at time ¢. If
we were using the FLE model, for example, the state update equation
would be:

Te41 = 2x¢ —xe—1 + N(0,02), 3)
= 2yt —yi—1 + N(0,0y). 4

Yt+1

3. ALGORITHM OUTLINE

Problem statement. Our goal here is to learn the motion model for
each object. The input to the system is the time series of images
(frames), and the set of possible motion models that could describe
the objects. For each of these motion models, and for each object,
the system outputs the relative likelihood that a given motion model
describes a given object. As our knowledge of each object’s motion
becomes more refined, the efficiency of acquisition improves.

If we are aiming for high temporal resolution, then we are try-
ing to reduce the number of pixels that we acquire. This is the goal
for the case study presented in this paper. Alternatively, to reduce
photobleaching, we would try to reduce the number of times we ac-
quire the object itself. This can be done by reducing the frame rate,
and by learning the motion models from a representative subset of
the objects instead of acquiring every object. These concepts will be
expanded upon in future publications.

Assumptions. We assume that objects are perfectly detected
provided that the appropriate region is acquired. This is in contrast
to [6], which considers the possibility that an object goes undetected
due to background noise, or, alternatively, that background clutter is
falsely detected as an object. These considerations will be taken into
account in future work.

A second assumption is that each object of interest occupies a
single pixel, thus avoiding size and shape considerations. Future
algorithms will model the possibly deformable sizes and shapes of
objects along with their motion.

Finally, although our system does allow for nonstationary object
dynamics, all experiments so far assume that these dynamics are sta-
tionary. That is, we assume that the motion models are not changing
over time.

Algorithm. The system does not make hard decisions about
which motion model an object is operating under, but instead asso-
ciates a probability with each possible model. We begin by assign-
ing initial probabilites to each model. For example, we could assume
that the three models Frw, FrrE, FsrE, are all equally likely. The
covariance of the state noise is also a model parameter. We could
initially assume that the possible values of the variance (either in the
x-direction or the y-direction) are all equally likely, with some upper
bound (such as the diameter of the cell). The algorithm then refines
these probabilities as it cycles through the following steps (a pseudo
code is given in Algorithm 1):

1. Predict distribution of objects: For each possible motion model,
we calculate the likelihood of finding each object in any given
pixel in the subsequent frame.

2. Acquire pixels according to some policy: For example, to in-
crease temporal resolution, we may choose to acquire a fixed
number of pixels that gives the highest probability of captur-
ing each object.

3. Having acquired these pixels, we observe where each object
was actually located (or whether an object was not located in
any of the acquired pixels). This information is used to update
the motion models.

4. If we allow for nonstationary object dynamics then we must
now update our belief about the motion models to reflect that
they may have changed.

Algorithm 1 Input: M, the set of all possible motion models,
I, ..., In, asetof N frames, f5, (), the distribution of the object’s
location in the first frame. Output: fas(m), the probability that the
object follows motion model m.

initialize fas(m), the prior likelihood of each motion model
fort =1to N do

compute fz, , (x|m) forallm € M

fﬂﬂt+1 (:E) = jM flf,+1 (x|m)fM(m)dm

choose set of pixels D to maximize [, fr,,, (z)dz

acquire pixels in D in I;41

if object found then

fyq () = 1 at object location, 0 elsewhere

else
faipqi(x) =O0forallz € D
end if
fu(m) = Pr(xeq1|m) far(m) forallm € M
end for

return fs(m)

4. CASE STUDY

We now explain these steps in more detail with a simple case study.
We assume that we are only acquiring a single object, and that the
motion is known in advance to be the random walk model. Hence,
the only unknown variable is the covariance. For the sake of clear
diagrams, we generally assume that the object moves only in one
dimension, meaning that the covariance consists of a single variable.

VI - 246

4.1. Initial Conditions

We assume the initial position of the object is known. As stated
above, the only unknown variable is the variance of the object’s mo-
tion, or, equivalently, the standard deviation ¢. Our initial assump-
tion is that this standard deviation lies between 0 and 10 with equal
probability. The true o (initially unknown by our system) is set to 1.

4.2. Prediction of the Distribution of the Object

Because the object follows a random walk, its expected location in
the subsequent frame is the same as in the current frame, but it is
still subject to the Gaussian state noise from (1). The problem is that
the system does not know the standard deviation of this Gaussian,
which would be required to compute the distribution of the object’s
expected location. However, the system does maintain the probabil-
ity of any given standard deviation being the true standard deviation.
Equation (5) shows how we compute the distribution of the object’s
position, f»(z), when the standard deviation o is only known as a
probability distribution f, (o). fz(x|o) refers to the expected object
distribution when ¢ is known, and is thus simply a Gaussian of mean
0 and standard deviation o;

folz) = / Jo(2]0) £ (0)do. 5)

Figure 1 shows how the object’s expected distribution changes
as the model is learned.

f(x)
1

08

06

04 / \

/ S

o = _—
20 -10 0 10 20
X
f(xjo=1)
0.2
0.15 i
I
0.1 /
|
0.05 /
\)\
20 10 0 10 20

Fig. 1. The top row shows the expected object distribution when the
standard deviation is unknown. The plots are in 1D (left) and 2D
(right). The bottom row shows the distribution when the standard
deviation is known to be 1.

Figure 2 shows the first four iterations of the algorithm. We see
that as the knowledge of o becomes more precise, the distribution of
the object’s expected location also becomes more precise.

The assumption thus far is that the object’s original position is
known. However, sometimes we fail to acquire the object in one
frame, but must still predict its location in the next frame. Figure 3
shows an example where the object is not found in the current frame,
and thus its location is only known probabilistically. The subsequent
object distribution is the convolution of this current distribution and
the random walk function.

i) f(x)

0.05 0.04
0.02 J‘L
0 i
0 5 10 200 10 0 0
fi) o fx) X
0.04 0.04
0.02 / 0.02
0 i
0 5 10 200 10 i 0 m
fla) . fix) *
0.1 0.04
D.DSN 0.02 j\
0 i
0 5 10 20 10 i 0
f{a) = %) *
0.1 0.04
0.05 jk 0.02 j\
0 i
0 5 10 20 10 i 0
o b

Fig. 2. Four iterations of the algorithm. The left side reflects our
knowledge of o; the right side shows the expected object distribu-
tion.

4.3. Acquisition of Pixels According to Policy

Suppose that we wish to acquire X pixels in each frame. In this case
we acquire the X pixels with the highest probability of containing
the object. It can be shown that this is also the set of pixels that
maximizes the rate at which we learn the object’s motion model.

4.4. Update of the Motion Model

On the basis of this acquisition, we now update our estimate of o as
follows: (0) ©)
Pr(d € D|o) fora(o
frew(o) = :
Pr(d € D)

In this equation, D refers to the displacement of the object between
the two frames. If the object was acquired in both frames then D
is a single number representing the actual measured displacement of
the object. However, if the object was not acquired, then the actual
displacement of the object is unknown and thus D is the set of all
possible values of displacement.

5. HIGHER-ORDER MODELS

When we consider higher-order models, we must also maintain dis-
tributions of the objects’ past positions. In the second-order linear
extrapolation, with state transition matrix Fsz, g, the update equation
for a single dimension is given as:

Tip1 = 3%y — 3x—1 + -2 + N(0,0).

Thus, we need to maintain estimates of x;, x+—1 and x¢_2. For the
frames when the object is observed, this estimate will be an exact
point. However, for frames when the object was missed, the position
of the object must be represented probabilistically.

This added complexity means that it takes longer to learn o than
for the random walk model. Figure 4 shows the rate at which o is
learnt for each of the three motion models, showing that the lower-
order models are faster to converge to the true value of o.

VI - 247

Current object distribution

fx) 0.02) 0.02
0.015 0.015
0.01 0.01
0.005 / \ 0.005 \
JLN \
0 0
-10 -5 0 5 10 -10 -5 0 5 10
X
Subsequent object distribution
) 0.01 fx) 0.02
NN
\ /
0.008 / \/ \ 0015 //
0.006 / ’ \ / \
/ \ 0.01 / “\
0.004 / \ /’ \
0.002 / \ 0.005 / \
/
0 0 - N\

Fig. 3. The top row shows two example acquisition regions that
failed to find the object, meaning that the object’s location is only
known probabilistically. The bottom row shows the resulting ex-
pected object distribution in the subsequent frame. The acquisition
regions are marked in red along the x axis.

Deviation fram true g

——sLE
——FLE |
RW

a0 100 120 140 160 180 200
Frame Mumber

Fig. 4. The rate at which o is learnt under each of the motion models.

Even once ¢ has been learnt, the higher-order models still re-
quire a larger average acquisition region. This is because when an
object is missed in any given frame, the resulting uncertainty about
the object’s motion is propagated for longer when using a higher-
order model. If the object must be captured in 90% of frames in
a l-dimensional setting, then an RW model requires an average ac-
quisition region of length 3.78c, an FLE model requires an average
acquisition region of length 4.48¢, and the SLE requires 6.97¢.

6. DISCUSSION

The framework presented is very general and can be adapted to a
wide variety of applications. Extension to multiple objects and more
complicated motion models is simple and intuitive. The cost func-
tion can also be broadened to include the time taken to move the
beam from one region of the image to another, rather than assuming
a cost directly proportional to the number of pixels acquired. We can
also adjust the goal that the system tries to acheive. In the case study
presented, the goal is simply to acquire the object in every frame. Al-
ternative goals are to learn the motion model as quickly as possible,
or to know the locations of the objects in every frame as accurately
as possible (but without necessarily acuqiring them). Although these
goals are closely related, they result in slightly different acquisition

strategies.

There is also potential to improve efficiency by using less greedy
regions. Currently we choose the region that we expect to give the
most information in the subsequent frame ¢ + 1. However, if we
know that we are going to acquire for at least the next N frames,
we can sacrifice information in the immediately subsequent frame
in return for more information in these future frames. For example,
in the right side of Figure 3, we choose an initial region that is less
likely to capture the object than the greedy region chosen in the left
side of Figure 3. Although this region reduces detection probability
in frame ¢+ 1, it actually increases the detection probability in frame
t 4+ 2. This occurs because even when the object is not captured in
frame t 4 1, there is a higher degree of certainty about its position in
frame ¢ 4 2.

Hence, there are many enhancements that are possible under the
outlined framework. The limiting factor in these more advanced sys-
tems is the increased computational complexity. The main challenge
of future work will be to ascertain what simplifications can be made
to maintain a manageable computational load yet without adversely
affecting system behavior.

7. ACKNOWLEDGEMENTS

The authors thank Estelle Glory for helpful insights.

8. REFERENCES

[1] S.Inoue, Handbook of Biological Confocal Microscopy, chapter
Foundations of Confocal Scanned Imaging in Light Microscopy,
2005.

[2] K. Kénig, Handbook of Biological Confocal Microscopy, chap-
ter Cell Damage During Multi-Photon Microscopy, 2005.

[3] A. Diaspro, G. Chirico, C. Usai, P. Ramoino, and J. Dobrucki,
Handbook of Biological Confocal Microscopy, chapter Photo-
bleaching, 2005.

[4] T. E. Merryman and J. Kovacevi¢, “Adaptive multiresolution
acquisition of fluorescence microscopy data sets,” IEEE Trans.
Image Proc., sp. iss. Molecular and Cellular Bioimaging, vol.
14, no. 9, pp. 12461253, Sep. 2005.

[5] A. Genovesio, T. Liedl, V. Emiliani, W. I. Parak, M. Coppey-
Moisan, and J.-C. Olivo-Marin, “Multiple particle tracking in
3-d+t microscopy: method and application to the tracking of
endocytosed quantum dots,” IEEE Trans. Image Proc., vol. 15,
no. 5, pp. 1062-1070, May 2006.

[6] A. Genovesio and J.-C. Olivo-Marin, “Tracking fluorescent
spots in biological video microscopy,” Proc. SPIE Conf. 3D
and Multidimensional Microscopy: Image Acq. and Proc., vol.
4964, pp. 98-105, May 2003.

VI - 248

