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ABSTRACT
In this paper a probabilistic technique for compensation of inten-

sity loss in the confocal microscopy images is presented. Confo-

cal microscopy images are modeled as a mixture of two Gaussians,

one representing the background and another corresponding to the

foreground. Images are segmented into foreground and background

by applying Expectation Maximization (EM) algorithm to the mix-

ture. Final intensity compensation is carried out by scaling and shift-

ing the original intensities with help of parameters estimated for the

foreground. Since foreground is separated to calculate the compen-

sation parameters, the method is effective even when image structure

changes from frame to frame. As Intensity Decay Function (IDF) is

not used, complexity associated with estimation of IDF parameters

is eliminated. Also, images can be compensated out of order as only

information from the reference image is required for compensation

of any image. These properties make our method an ideal tool for

intensity compensation of confocal microscopy images which can

suffer intensity loss due to absorption/scatteing of light as well as

photobleaching and can change structure from optical/temporal sec-

tion to section due to change in the depth of specimen or due to a

living specimen. The proposed method was tested with number of

image stacks and results for one of the stacks are presented here to

demonstrate the effectiveness of the method.
Index Terms— Image compensation, Biomedical image process-

ing, Biomedical microscopy

1. INTRODUCTION

Images produced by confocal microscope tend to decrease in inten-

sity with time as an effect of photobleaching when conventional fluo-

rescence tags are used and with depth due to absorption or scattering

of excitation and fluorescence. These effects make analysis of the

images without intensity correction a complicated problem. Meth-

ods used to compensate this intensity loss can be categorized into

two types,

• Pre-processing methods: Ones that correct the intensity loss

with modified optics as the images are being captured.

• Post-processing methods: These methods compensate the im-

ages after they are captured. IDF methods model intensity

loss in the images as parametric decay function of depth and

time. The decay parameters are estimated and compensated

for in these methods. Another family of methods rely on

matching histogram profiles of image stacks. These meth-

ods however cannot handle change in image structure along

optical axis.

∗Work presented here is supported by NSF IIS-0546605, NSF IIS-
0612152, NSF IIS-0612214.

Optics based methods assume that the majority of the intensity loss is

due to absorption and scattering of light as it travels through the spec-

imen. As rate of photobleaching can be different for different types

of specimens, intensity loss caused by it cannot be compensated by

the optics alone. For this reason, we concentrate on post process-

ing methods to correct the intensity loss. As factors contributing to

the intensity loss cannot be modeled accurately for practical images

[1], it poses a problem when IDF is used for intensity compensa-

tion. Also combination of intensity loss due to photobleaching and

depth can give rise to a complicated IDF function. Our method is

motivated by histogram matching, however it deals with continuous

domain by modeling image as mixture of two Gaussians and match-

ing profiles of foreground Gaussian. By matching foreground only,

our method avoids the problems arising due to change in structure of

the image.

Different approaches to correct the intensity variations in im-

ages can be found in the present literature. In [2], the authors apply

a general model in which the horizontal and vertical flow fields as

well as additive and multiplicative intensity relationships are esti-

mated for every pixel. According to [3], this approach is computa-

tionally expensive. A least square optimization based approach, in

which brightness and contrast are the parameters to be optimized,

is proposed in [4, 5]. These techniques are highly sensitive to out-

liers. In [5] reweighed least square method is used to correct the

disadvantage of [4]. The method discussed in [5] is not only sensi-

tive to noise which can be eliminated by median filtering, but also

to the dynamic movement of objects in neighboring optical sections.

This gives erroneous and unstable results even in the presence of a

very few outliers in optical sections [3]. In [6] intensity variations

are corrected based on histogram warping, but it is restricted to the

case where a global, spatially invariant, non linear, monotonically

increasing relationship exists between the intensities of the two im-

ages. Ĉapek et al. [3] combines the approaches of [5] and [6] and

attempts to give a general and fully automatic method of correcting

intensity loss in confocal microscopy images. The proposed method

manipulates the image histogram as in Ĉapek et al. [3], but it focuses

on a continuous domain of probabilities to filter the foreground in-

formation to calculate the correction parameters. Before we present

our approach, we shortly discuss approach by Ĉapek et al. [3].

The approach proposed in [3] consists of two stages. In the

first stage, a standard histogram is constructed with the help of his-

tograms of optical sections in the image stack. In the second stage,

the individual histograms are warped according to the standard his-

togram to achieve the brightness and contrast of the standard his-

togram. The construction of standard histogram is adopted from [7].

The approach is based on landmarks chosen in the image histogram.

The landmarks chosen are the minimum and maximum intensities
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and percentiles of the foreground mode of the image.

Bimodal image histograms are frequently observed for medical

images captured with confocal microscope. In case of the bimodal

histograms, one mode corresponds to the background while the other

mode corresponds to the foreground object. Hence, it is selected as

the base for calculating other landmarks in histogram. The disad-

vantage of method [3] is that only a heuristic method is presented

to calculate the foreground mode which is the basis for setting the

scale for the construction of standard histogram. The foreground

mode is calculated by removing the background mode by threshold-

ing. The overall mean intensity of the image is set as the threshold.

The choice of the actual landmark configuration is also an impor-

tant factor. This mode based method is not appropriate for images

in which foreground and background modes are very close to each

other. A better approach suggested in [7] is to choose the median

of the histogram of the foreground as the landmark. This method

too does not guarantee best fit mode in all cases [7]. Apart from the

foreground mode, minimum and maximum intensities are also set

as landmarks in the creation of standard histogram. The minimum

and maximum intensity of image are highly sensitive to noise. In

order to eliminate the influence of noise concentrated around mini-

mal and maximal intensity values, the upper and lower boundaries of

the standard histogram must be set which requires interaction with

the user. The proposed method aims to overcome the disadvantages

of [3]. The main idea is to filter the foreground information from a

given image by modeling it as a mixture of Gaussians and use this

information to compensate the intensity loss of the photobleached

images. The foreground mean and standard deviation is used to

transform the pixel intensities of the original image relative to the

intensity parameters of a reference image.

The paper is organized as follows: Section 2 explains the pro-

posed approach in detail. Section 3 presents experimental results.

The paper concludes in Section 4.

2. PROPOSED APPROACH

In many statistical applications, Gaussian Mixture Model (GMM) is

used as a general tool for modeling a large heterogeneous popula-

tion. Detailed introduction to GMM can be found in [8]. GMM is

a semi-parametric estimation approach that provides good flexibil-

ity and precision in modeling the statistics of unlabeled sample data.

In our case, the image data can be assumed to be generated from

two components, one forming the background of the image and the

other pertaining to the foreground of the image. However, it is not

known that which pixel belongs to which component. As a result of

this the problem can be considered to have missing data, i.e., back-

ground/foreground membership information.

Each component can be considered to have its own parameters

θ, which define the probability density function Pi(x). These pa-

rameters can be estimated through the Expectation Maximization

(EM) algorithm which is the widely used approach to solve the miss-

ing data problem. It devises appropriate parameters for the chosen

model with respect to the data points generated by individual com-

ponents. In the EM algorithm, initial estimates for the parameters

are chosen arbitrarily. As the selection of initial estimates affect the

final results, they must be chosen carefully. The iterative parame-

ter estimation process consists of two steps, the Expectation (E) step

and the Maximization (M) step. In the expectation step, the expected

value of the missing data is calculated. In the Maximization step, the

resulting value of the expectation is maximized by selecting new set

of parameters. The E and M steps are iterated until a stopping crite-

rion such as a number of iterations is met or until there is no change

in the mixture model parameters.

As discussed previously, most of the images captured with con-

focal microscope are bimodal, one mode each for background and

foreground. Hence, the image data is modeled as two-component

GMM. Based on the assumption that the loss of intensity increases

relatively with time or depth or both, the first image of the stack will

have minimal loss of intensity and can be considered as the reference

image. The reference image should have good visual information of

the object or specimen to be studied. Initially, mean intensity and

standard deviation for the foreground and background are estimated

with EM algorithm. Then the parameters of the foreground com-

ponent are used to warp the each pixel of the image to its relative

reference intensity. Following subsections explain individual steps

taken during this process in detail.

2.1. Parameter estimation

For a two component GMM of jth image in the stack, there are six

unknown parameters,
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In the above equations i = 1, 2 and n = 1, 2, . . . , N × M , where

N × M is the dimension of the image and j = 1, 2, . . . , K where

K is the number of the image slices.

In the second step, the Gaussian mixture parameter values can

be estimated from the above membership probability.

w
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Above two steps are iterated until the all the parameters converge.

The iterative process is repeated for each image in the stack.

2.2. Image warping

Once the mixture parameters for the image are known, image can

be compensated easily. Generally, compensation for foreground and

background parameters requires different transformation. These trans-

formation can be applied individually to the pixels by classifying

them as background or foreground pixel. This can be done based

on the membership probability. If F
j
1
(n, j) > F

j
2
(n, j), the pixel

belongs to the background, otherwise the pixel belongs to the fore-

ground. To carry out the compensation, for the most of the im-

ages there is no need to separate background and foreground as
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background of confocal microscopy images has intensity close to

zero. Also, one is very rarely interested in background information.

Hence, the compensated intensity for nth pixel in jth image can be

calculated from original intensity xj
n as:

(x′)j
n =

(xj
n − μ

j
2
)

σ
j
2

σr + μr (7)

Generally, foreground mean and standard deviation of the first image

in the stack should be set as μr and σr , i.e., the reference parameters

for the image stack restoration. However, in a case where first image

in the stack does not have enough details or is not the brightest, one

of the other images can be chosen to be the reference.

3. EXPERIMENTAL RESULTS

The proposed approach was implemented in MATLAB and was tested

on several sets of image in Biovision lab database. The experimental

image sequences were acquired by Zeiss LSM 510 META confocal

laser scanning microscope. Before proceeding to the experimental

results, we briefly talk about the initialization used for the experi-

ment.

Initialization is crucial for EM algorithm. As parameters from

reference frame are needed for image restoration, EM is carried out

on the reference image first. The mixture weights for the reference

frame m can be initialized as,

w
m
1 = w

m
2 = 0.5.

Since background mean should be lower than overall image mean

and foreground mean should be higher, one can select their initial

values arbitrarily to follow above restriction.
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Good initial value for the mixture standard deviation is the overall

standard deviation of the image.

σ
m
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m
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These values can be improved upon by randomly using various ini-

tializations and then choosing the one that maximizes the member-

ship probabilities. However reasonable fixed values as stated above

were used for repeatability of the experiment.

After successful completion of the EM procedure for the refer-

ence frame m, reference parameters are set as,

μr = μ
m
2 , σr = σ

m
2 .

As any image in the sequence is very similar its previous image,

parameters of previous image after EM are used to initialize EM

procedure for the next image.
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This also helps to reduce the computational burden, by reducing

number of EM iterations.

The sequence tested here, is a temporal 3D sequence with reso-

lution 336 × 256 × 12. 45 instances of the specimen were captured

in 65 seconds. Figure 1(a) to (l) shows all the 12 optical sections at

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 1. Original optical sections at time t = 1 from (a) top (z = 1)

to (l) bottom (z = 12) (bottom frame is used as the reference)

(a) (b) (c)

Fig. 2. Foreground and background classification for optical sections

at time t = 1 (a) z = 3, (b) z = 6, (c) z = 12 (white region denotes

foreground and black region denotes background)

time t = 1. It can be observed from the images that the intensity of

the optical sections varies significantly from one section to the other.

The intensity rises from depth z = 1 to z = 5 and drops again till

z = 11 before it rises in the final optical section at z = 12. Also,

the structure of the image changes significantly with depth.

GMM parameters were calculated with EM algorithm. For each

frame, the iterative process was terminated when foreground and

background mean values changed by less than 0.01. After estimating

GMM parameters, the classification of image pixels into foreground

and background gives Figure 2. Despite the structural changes and

changes in intensity, the foreground regions are consistently detected.

The success of the proposed method can be attributed to this consis-

tency.

Based on the classification, mean intensities were calculated for

the image foreground for analysis. Figure 3(a) shows the plot for the

variation in the foreground mean with depth at time t = 10, 20, 30,

which is in agreement with the visual observations made. However,

variation of mean intensity with time plotted in Figure 3(b) for depth

z = 3, 6, 12 reveal facts which are difficult to observe visually. In-

tensity of the foregrounds drops as the time progresses as expected

due to effects of photobleaching. However, rate of the decay is dif-

ferent at different depth levels. At depth z = 6 the mean intensity
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Fig. 3. Variation in the mean intensity of foreground of original image stack and restored image stack (a) with depth (b) with time

drops from 86.2 to 84.5, while at depth z = 12 it drops from 89.8 to

84.5. Decay rate at z = 12 is almost 3 times the decay rate at z = 6.

As our method does not utilize IDF, estimation of complicated

IDF which is required to model this image sequence becomes un-

necessary. The image sequence was restored with reference values

μr = 82.5 and σr = 51 which were estimated from frame at t = 1
and z = 12. This frame was chosen as it has the maximum mean

intensity. Restored images at z = 1 are shown in Figure 4. Steady

values of the intensities can be observed in the plot which is also

reflected in the restored images in Figure 4.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 4. Restored optical sections at time t = 1 from (a) top (z = 1)

to (l) bottom (z = 12)

4. CONCLUSION

For reliable analysis as well as visualization of cell dynamics, it is

essential that the acquired images reflect the exact information of

the specimen. The objective of the proposed method was to help

regain the information lost due to various deteriorating factors such

as scattering and absorption of the excitation, photobleaching of flu-

orescent images etc. Current approaches to solve this problem are

computationally complex, time consuming, restricted to parametric

decay models (IDF) and highly sensitive to noise. The proposed

method provides a simple yet effective statistical approach to solve

this problem. It overcame the disadvantages of current methods and

at the same time increased the visual value of confocal microscopy

images. The main idea was to filter the foreground information from

a given image by modeling it as a mixture of Gaussians and use

this information to compensate the intensity loss of the confocal mi-

croscopy images. When multiple fluorescence tags are used in a

specimen, the proposed method can be simply applied individual

tags or a multiple Gaussian mixture model can be used to handle

the scenario.
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