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ABSTRACT
This paper addresses modeling and inference for localized calcium
release events observed in cardiac muscle tissue known as sparks, a
recently discovered and little-understood phenomenon thought to be
central to cardiac pathophysiology and hence of much scientific in-
terest. In contrast to earlier algorithms proposed for studying sparks
observed via confocal line-scan data, we consider here a model for
the spatiotemporal spark process in unpaced cardiac myocytes ob-
served in vitro via fluorescence video microscopy. In particular, we
focus on parametric modeling of the spark process, leading natu-
rally to a framework for joint localization and estimation of spark
events and their parameters in space and time, along with the abil-
ity to quantify the uncertainty of our resulting inference. We show
that for simulated sparks derived from real micropatterned cardiac
myocyte data, and for which ground truth is known, our method sig-
nificantly outperforms a video-adapted version of the most popular
spark localization method currently in use in the cardiac biophysics
community. Importantly, the framework we propose extends natu-
rally to other other applications of video microscopy, and also allows
for subsequent refinement of both the models and fitting procedures
described here.

Index Terms— Biomedical microscopy, Biomedical image pro-
cessing, Biomedical signal detection.

1. INTRODUCTION

The release of Ca2+ plays a critical role in the functioning of stri-
ated muscle tissue. In particular, calcium release channels feature
centrally in the electromechanics of cardiac muscle cells termed my-
ocytes. So-called calcium sparks, or “localized discrete calcium re-
lease events” [1] are thought to underlie in some way the excitation-
contraction coupling mechanism in heart muscle [2]. In turn, spon-
taneous calcium release has been reported to be associated with a
form of cardiac arrhythmia known as atrial fibrillation [3], implying
that the study of calcium sparks may shed light on unresolved issues
in cardiac pathophysiology [4]. Therefore, it is of much scientific
and medical interest to characterize the dynamics of the underlying
spatiotemporal spark process through experimental observation.

In brief, the problem that we address here is as follows. First, a
cardiac myocyte exhibiting sparks is observed through a video mi-
croscopy apparatus and recorded as a sequence of digital images. In
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these video data we observe a spark whose amplitude varies over
the length of the sequence; within the sequence, we wish to localize
the spark’s peak and infer its parameters, while contending with the
fact that the spark signal itself changes over space and time, as do
local signal-to-noise ratios owing to noise processes inherent in the
imaging modality as well as various biological phenomena.

Since the first explicit report of spark events in [2], the spark
process is typically observed through confocal line-scan imaging of
single cells, via relative levels of fluorescent Ca2+ indicators (fluo-
3). On this basis, models for both sparks and the associated observa-
tion process have been constructed (see, e.g., [5, 6]) and algorithms
devised and employed to detect spark events (see, e.g., [1, 7, 8]).
Earlier work has focused on nonparametric methods for localization
of sparks and collection of relevant statistics; for example, from a
statistical perspective the popular method of [1] can be interpreted
as a threshold-based likelihood ratio test for spark presence. Here,
however, we consider a novel experimental scenario, and formulate
a rigorous model-based approach that leads directly to inference re-
garding spark parameters in a manner that improves upon state-of-
the-art methods in the cardiac biophysics literature.

2. PARAMETRIC SPARK MODEL

The work of [9] represents a recent study of sparks in cardiac muscle,
and motivates our modeling approach. It focuses on characterizing
the spark process in micropatterned myocytes (cardiac myocytes ob-
served in vitro whose two-dimensional geometry has been controlled
using specialized techniques). A central scientific question in the lit-
erature concerns the biomechanical cytoskeletal properties of these
cells, as reflected through the spark process [10]; as such properties
depend on the entirety of the cell, video microscopy techniques are
employed in [9] in order to observe the entire cell over time. Cells
are stained with calcium-sensitive fluorescent dye, excited, and then
recorded via (for example) a video camera mounted on an inverted
microscope. Hence, the generated data consist of a sequence of dig-
ital images corresponding to observed fluorescence amplitude as a
function of space and time. For the purposes of the present compar-
ison and to establish a baseline for future comparison, we work with
simulated data based on these micropatterned cardiac myocyte data,
for which ground truth is known.

2.1. Continuous Spark Model

We employ an eight-parameter model to describe the fluorescence
amplitude of a spatiotemporal spark event. Let t represent time (in
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Fig. 1. Typical realization of the spark model of Section 2, with
t0 = 3.9, A0 = 35.142, δt = 1.5, τr = 2, σ0 = 1.8, and σ1 = 1

units of video frame number), and x and y describe the spatial lo-
cation of spark amplitude (in units of pixels). The work of previous
researchers [1, 9] suggests that the spatial amplitude distribution of
a spark is well modeled by the Gaussian form, and that this distribu-
tion is modulated by an exponential rise and decay in time. We have
observed that a spatial diffusion process (as a function of time) is a
better fit to collected data than the spatially homogeneous, temporal
exponential decay model typically used in the literature. Following
this observation, we define the spark event to have a spatially Gaus-
sian profile that is radially symmetric; however, once the spark’s
exponential rise has completed, we allow the spatial extent of this
profile to vary with time according to a spatial diffusion parameter

σ2(t), with this variation parameterized as 1
σ2(t)

exp(−x2+y2

2σ2(t)
).

We model the initial growth in spark amplitude as an exponen-
tial gain process which starts from a specific point in time t0 − δt,
and the subsequent decay in amplitude as strictly a function of the
diffusion described above, which begins at time t0; in other words,
the amplitude of the spark decreases in time only as its spatial extent
σ(t) increases linearly, so that σ(t) is defined as follows:

σ(t) =

(
σ0, if t0 − δt ≤ t < t0,

σ0 + (t− t0)σ1, if t ≥ t0.

The complete model for a spark event s(x, y, t) is thus given by8>>><
>>>:

A0
1−e

− t−(t0−δt)
τr

1−e−δt/τr
exp

“
− (x−x0)2+(y−y0)2

2σ2
0

”
, if t0 − δt

≤ t < t0,

A0
σ2
0

(σ0+(t−t0)σ1)2
exp

“
− (x−x0)2+(y−y0)2

2(σ0+(t−t0)σ1)2

”
, if t ≥ t0,

where (x0, y0, t0) is the spark peak in space and time, A0 is its peak
amplitude, δt is the time prior to the peak at which the spark event
commences, τr is the growth rate of the subsequent exponential am-
plitude rise, σ0 is the initial spatial extent of the spark, and σ1 is
the linear growth rate of the spark’s spatial extent following its peak.
The top plot in Figure 1 shows a typical realization of this contin-
uous spark model (using parameters consistent with observed data),
represented by an amplitude profile of the spatial center of the spark
as a function of time.

2.2. Spark Model Observed via Digital Video

A digital imaging device sums light energy over time and space at
each pixel’s spatial location. Thus, our model for the spark event

as observed via digital video is not a spatiotemporal sampling of the
continuous spark model, but rather an integration defined as follows:8>>>>>>>>>><
>>>>>>>>>>:

A0

t2−t1+τr

“
e
− t2−(t0−δt)

τr −e
− t1−(t0−δt)

τr

”
1−e−δt/τr

· R y2
y1

R x2
x1

exp
“
− (x−x0)2+(y−y0)2

2σ2
0

”
dx dy, if t0 − δt

≤ t1, t2 < t0,

A0

R t2
t1

R y2
y1

R x2
x1

h
σ2
0

(σ0+(t−t0)σ1)2

· exp
“
− (x−x0)2+(y−y0)2

2(σ0+(t−t0)σ1)2

”i
dx dy dt, if t1 ≥ t0,

where t2 marks the end of an exposure frame and t1 its beginning.
Note that frames which include t0 will be a combination of the above
two equations, and frames which include t0 − δt will obey the con-
straint t1 = t0−δt. With respect to the integration process, {x1, x2}
and {y1, y2} describe the edges of the observed pixel in question.

As an example, the middle plot of Figure 1 shows the continuous
spark event of the top plot, but following integration in both time and
space as described above. The bottom plot shows a typical example
of an observation of this event after white Gaussian noise of zero
mean and unit variance has been added to the integrated spark signal.

3. SPARK LOCALIZATION AND ESTIMATION

To isolate the tasks of spark localization and parameter estimation
for careful initial study, we reduce the problem at hand to that of es-
timating the eight model parameters {x0, y0, t0, A0, δt, τr, σ0, σ1}
describing a spark event from a video sequence whereupon (1) a
spark is known to exist and (2) the temporal peak of the spark has
been localized to within one exposure frame. We identify the null
hypothesis H0 as a noise model with mean zero, and the alternate
hypothesis H1 for a given set of parameters as the same noise model,
but with a mean given by the amplitude under the integrated spark
model. The localized maximum-likelihood estimation (MLE) algo-
rithm we propose here starts by finding several likely spark candi-
dates by selecting the least likely pixels under H0. It improves these
estimates by maximizing the likelihood of these candidates under
H1 using a hill-climbing algorithm (as in the maximization step of
the well-known Expectation-Maximization algorithm). Finally, it se-
lects the most likely candidate under H1 as the localized spark event,
on which it bases its estimates of the spark parameters:

Algorithm 1 Proposed MLE Spark Localization and Estimation

1. Given a model for the additive observation noise, calculate a
one-sided p-value under H0 for each observed pixel.

2. Create a “neighborhood” p-value by multiplying together the
p-values of pixels neighboring each other in space and time
(as pixel values are independent under H0).

3. Locate the n smallest neighborhood p-values whose spatial
and temporal extents do not overlap. Set these to be the n
starting points for a spark peak in space and time.

4. For each such starting point of peak location, create condi-
tional starting-point estimates of A0, δt, τr , σ0, and σ1.

5. Apply a hill-climbing algorithm to find n local modes (i.e.,
the most likely set of parameters under H1).

6. Compare the likelihood under H1 of the n modes and declare
the most likely result as the localized spark event.
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For comparison purposes, we adapted a version of the threshold-
based algorithm proposed in [1], the current de facto standard in the
cardiac biophysics literature on calcium spark phenomena:

Algorithm 2 Threshold-Based Spark Localization [1]

1. For a given frame, identify all pixels exceeding a threshold T .

2. Merge identified pixels by considering all pixels within a dis-
tance k of each other to be members of the same “island.”

3. Estimate the spark center as the centroid of the largest island.

4. Using the maximum value of this island, estimate spark spa-
tial extent based on the recorded full-width half-maximum.

The authors of [1] recommend applying a threshold of T =
3.5σn to a single frame of image data, where σn represents the stan-
dard deviation of the observation noise. When the noise model is
identical for every pixel, this algorithm can be viewed as applying a
likelihood ratio test to each pixel and selecting pixels for which the
null is rejected under this test. These pixels are then merged into
candidate “islands” of pixels, and the islands used to estimate spark
location and spatial extent. Under the assumptions forming our ba-
sis for comparison, the correct frame to which to apply this test is
known a priori; moreover, a spark is known to exist. Therefore, if
no pixel is found that exceeds T , then the pixel with largest value is
selected as the spark center.

4. SIMULATION AND RESULTS

To compare Algorithms 1 and 2 over the range of local signal-to-
noise ratios (SNR) typically seen in practice, we simulated multiple
trials consisting of sets of eleven video frames per trial, each having
a resolution of 128×128 pixels. We used zero-mean white Gaussian
noise of unit variance as our noise model, and simulated instances of
the spark parameters depicted in Figure 1 while varying peak spark
amplitude A0. In keeping with [1], we took relative SNR to be the
ratio of the peak integrated value of the spark model to that of the
standard deviation of the noise. (Thus, for example, the SNR of
Figure 1 is 20 log10(4/1) = 12.0 dB.) In this manner we varied A0

while holding all other parameters constant, and simulated 16290
trials for each relative SNR in the set {−6,−5, . . . , 12}.

For each trial, the peak location of each simulated spark was
chosen uniformly at random in space (x, y), and the peak location
in time t was chosen uniformly at random between frames three and
four. Algorithm 1 (Local MLE) was applied to each set of frames,
with the number of candidate neighborhoods set to n = 5 and a spa-
tiotemporal neighborhood size of 4×4×4 pixels; the resultant esti-
mates of the eight model parameters {x0, y0, t0, A0, δt, τr, σ0, σ1}
were then recorded. Algorithm 2 (Threshold) was preliminarily ap-
plied using a variety of values for threshold T and merge distance k,
based on which we observed T = 3.5 and k = 1 to give the best
results (consistent with the recommendations of [1]).

For the purposes of evaluation, we define a spark to have been
successfully localized if the estimated spark spatial peak location lies
within σ0 of the true spatial location (recalling that for these simula-
tions, σ0 = 1.8). Figure 2(a) compares the rates of successful spark
localization for Algorithms 1 and 2 as a function of relative SNR,
and Figure 2(b) compares the corresponding root mean squared er-
ror (RMSE) in estimated spatial peak location. Note that this value is
a combination of variance in estimation and failure of localization, as
incorrectly identified sparks will by definition have a large RMSE.
Therefore, it is of interest to examine the RMSE of the estimated

spatial position for just those sparks that were correctly localized,
bearing in mind the rates of correct localization indicated in Fig-
ure 2(a) as a function of relative SNR for each of the two algorithms.
In this vein, Figure 2(c) demonstrates that the location estimates of
Algorithm 1 quickly improve to sub-pixel precision as the relative
SNR increases. Finally, conditional upon a spark being correctly lo-
calized, Figure 2(d) compares estimates of spark spatial extent (with
Algorithm 2’s determination of full-width half-maximum converted
into an estimate of σ0 for comparison purposes). For each quantity
of interest, an approximate 95% confidence interval was calculated
based on the number of simulated observations in question; these in-
tervals have been added to each subplot of Figure 2 in the form of
error bars. The significantly larger error bars for low relative SNR
levels in Figures 2(c) and 2(d) are a result of the limited number of
successful spark localizations observed in these conditions.

As Algorithm 2 does not produce estimates of A0, δt, σ1, or
τr , we have no reference for comparison. With the exception of
τr , we have observed all estimates from Algorithm 1 to improve as
a function of increasing relative SNR. The RMSE of δt decreased
from 0.6 frames to 0.5 frames, that of A0 held nearly constant at
about 0.5 times the true value of A0, and that of σ1 decreased from
around 1 to below 0.2. In contrast, the RMSE associated with τr
actually increased. We believe that, given the short time period over
which the simulated spark rose, there was not enough information
available to correctly estimate τr . As the simulated spark parameters
were consistent with our observations of experimental data relative
to typical imaging rates, we suspect that Algorithm 1 may only be
able to suggest a rough bound on τr in practice.

5. DISCUSSION

The simulation results described above clearly indicate the poten-
tial of a rigorous approach to spark localization. However, several
important modeling and algorithmic extensions must be employed
before arriving at an accurate, widely applicable model for video
microscopy data of this kind. Most fundamentally, we intend next
to relax the assumption that a spark exists and that its temporal peak
can be localized to within one frame. This can be accomplished by
extending the algorithm to fit sparks over time, and by incorporating
formal model selection criteria to test for the existence of a spark.
Useful extensions will also include enhanced robustness to nuisance
processes, and more accurate noise modeling.

Additionally, observation models for actual imaging modalities
are more complex than simple additive white Gaussian noise. At
each pixel, the output of a typical imaging device is most accurately
modeled as a Poisson process with a time-varying rate. We may
then take the observed counts as the sum of the resultant process and
an additive noise term, whose (time-invariant but spatially varying)
mean models the so-called “fixed-pattern noise” due to variations in
the baseline voltage at each photodiode location, and whose variance
accounts for thermal noise in the device. Fixed-pattern noise may be
estimated directly by taking data in the absence of any light input;
based on a preliminary analysis we expect to be able to successfully
apply the normal approximation to the Poisson distribution in this
case. Doing so yields a model in which the time-varying rate is
observed in the presence of additive noise whose variance depends
in turn upon this rate.

Even before considering the extensions described above, we are
able to draw two clear conclusions from the simulations presented
in this paper: First, the superior performance of our proposed local-
ization and estimation methodology can be explained by the fact that
we formally “borrow strength” across regions of pixels to inform our
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(a) Rate of successful spark localization (spatial peak es-
timation to within σ0 of true location) vs. input SNR
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(b) Root mean squared error in estimated spatial peak lo-
cation, also shown as a function of input SNR
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(c) Spark location error as in (b), but shown conditioned
upon successful spark localization as defined in (a)
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(d) Error in estimation of spark spatial extent σ0 = 1.8,
also shown conditioned upon successful localization

Fig. 2. Comparison of Algorithms 1 (Local MLE, solid line) and 2 (Threshold, dashed line) for spark localization and parameter estimation.
Error bars (which often lie within the plotted squares and diamonds) represent approximate 95% confidence intervals for the values shown.

inference, in contrast to the threshold-based algorithm of [1]. Sec-
ond, our framework of modeling and simulation not only enables
us to quantitatively compare the performance of various algorithms,
but will also allow for full uncertainty quantification in data analy-
sis, through means such as confidence intervals for spark parameter
estimates and formal hypothesis tests on spark process statistics.
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