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ABSTRACT

2D gel electrophoresis (2DGE) is the most commonly used

method for protein separation. After gel scanning, images

with a plethora of spot features are generated. In this paper

we propose the use of the Contourlet Transform (CT) for 2D

gels image denoising and compare it to the Wavelet Trans-

form (WT). We show that contourlets not only achieve bet-

ter average PSNR performance, but also preserve better, rela-

tively to wavelets, the spot boundaries and alter less the inten-

sities of significant spot features. Proper denoising of 2DGE

images is essential in order to extract reliable spot features in

proteomics workflows for biomarkers discovery.

Index Terms— Biomedical image processing denoising,

Wavelets, Contourlets, 2D gel images, Proteomics.

1. INTRODUCTION

Proteomics is the field that studies multiprotein systems, fo-

cusing on the interplay of multiple proteins as functional com-

ponents in a biological system. The first step in a typical pro-

teomics analysis workflow is proteins separation, followed by

quantification and differential expression analysis. Despite its

limitations, 2D gel electrophoresis (2DGE) remains the most

widely used protein separation method. Using 2DGE, indi-

vidual proteins in a mixture are resolved in the first gel di-

mension according to their molecular weight and in the sec-

ond dimension according to their isoelectric point. After gel

scanning, protein species are depicted as spots of varying size

and positions in the resulting gel image. An example of a

typical 2DGE image is shown in Fig. 1.

A very important task in a proteomics study is the cor-

rect analysis and interpretation of 2D gel images through im-

age analysis. This task aims at (i) the accurate detection and

quantification of protein spots in a gel, followed by (ii) the

matching of corresponding spots in sets of gels, as needed to
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identify proteins that can discriminate reliably between two

states of a biological system (biomarkers discovery). 2DGE

image analysis typically includes image preprocessing (noise

suppression, artifacts removal, and background correction),

segmentation (spot boundary detection) and protein expres-

sion quantification (spot volume estimation).

It is well known that 2DE gel images are inherently noisy

due the gel’s susceptibility to dust and the imperfect image

acquisition process [1]. The objective of this work is the

effective denoising, i.e. increasing the SNR without insert-

ing significant distortions to the image. Since denoising is at

the very beginning of the preprocessing operations pipeline,

if successful it may impact greatly on the results of down-

stream processing steps: (I) It prevents the over-estimation of

the image background and helps extracting faint, yet signif-

icant, spots [2], (II) it prevents the formation of misleading

spots (artifacts), thus resulting in more truthful spot matching

and more accurate determination of the significant spots to be

further analyzed by mass spectrometry methods, (III) it leads

to more accurate estimation of spot properties (e.g. spot vol-

ume) leading to improved spot differential analysis which is

key for reliable biomarkers identification [3].

The noise suppression methods used in commercially avail-

able image analysis software packages are based on spatial fil-

tering [4]. Despite their simplicity, these filters tend to distort

severely spot edges and alter the intensity values of spot pix-

els. A comprehensive study [5] has recently shown that the

Wavelet Transform (WT) outperforms spatial filtering, both

in terms of PSNR and in terms of minimizing spot edge dis-

tortions. This is not surprising since 2DGE images are typ-

ical examples of non-stationary signals due to the large and

unstructured variations in spot intensities and size, so it is im-

possible to distinguish signal from noise in the space or fre-

quency domain alone. In this paper we show that the recently

introduced Contourlet Transform (CT) [6] can do better than

the Wavelet Transform in denoising 2DGE images. We will

show that using the CT for 2DE gel image denoising not only

improves PSNR but also better preserves the informative im-

age details, relatively to the WT.

The rest of the paper is organized as follows: In Section 2
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Fig. 1. A typical 2D Electrophoresis gel image.

we justify the use of the CT over the WT for the problem at

hand. Section 3 describes the methodology and datasets we

used in the CT vs. WT evaluation for 2DGE image denoising.

In Section 4 we present and discuss the results of the evalu-

ation. Finally in Section 5 we summarize our findings and

point to future work.

2. WHY USING CONTOURLETS?

Multirate signal analysis provides a natural way to represent

images, starting from a coarse approximation and gradually

adding details as we move towards finer scales. Image de-

noising in the space-frequency domain is a three-step proce-

dure: 1) image decomposition, 2) coefficients thresholding,

3) inverse transformation to the original domain.

Despite its many advantages, the WT has also some known

disadvantages: (i) wavelets are limited in capturing the geom-

etry of image edges; after all, it is a separable extension of a

1-D transform, (ii) although wavelets are good at isolating the

discontinuities at edge-points they do not exploit the smooth-

ness along the edges, (iii) wavelets can capture only limited

directional information (vertical, horizontal and diagonal) [6].

Recently, a new multirate transform that overcomes these

limitations was introduced, called the Contourlet Transform

(CT) [6]. The CT is a flexible multiresolution, local, and

directional image decomposition method using contour seg-

ments. By construction it involves two filter bank stages: a

Laplacian Pyramid (LP) followed by Directional Filter Banks

(DFBs). The LP stage decomposes the image into frequency

bands, while the DFBs decompose each detail band into sev-

eral (but power of 2) directions.

The CT not only enjoys the multiscale and space-frequency

localization properties of the WT, but also offers a high de-

gree of directionality and anisotropy. Specifically, the CT

uses basis functions that may be oriented at any power of 2

directions with flexible aspect ratios. With such a rich set of

basis functions, contourlets can represent a smooth contour

with fewer coefficients than wavelets. Only contourlets that

match in both location and direction with image contours pro-

duce significant coefficients. The CT effectively explores the

fact that image edges are fixed both in location and direction.

Therefore, the CT can represent effectively images exhibiting

anisotropic information, such as the 2DGE images.

3. EVALUATION METHODOLOGY

The steps we have followed in the CT vs. WT evaluation for

2DGE image denoising are summarized below: First we find

the best set of parameters (basis function, number of decom-

position levels, and number of directions at each frequency

level) for each transform. This choice is crucial since it af-

fects signal approximation and a wrong selection will lead

to loss of information. Next, we use these parameters and

compare the two transforms using two of the best known co-

efficient shrinkage methods. The comparative evaluation was

done, first in terms of PSNR (the most commonly used noise

reduction measure) and then in term of introduced image dis-

tortions. Finally, we applied Watershed based segmentation

in order to substantiate the expected improvement in spot de-

tection performance.

There are several coefficient shrinkage methods proposed

in the wavelets literature. We selected to apply two popular

methods, namely the BayesThres [7] and Bivariate shrinkage

with local variance estimation (using on a 7x7 window) [8].

BayesThres, in conjunction with the WT, has been shown to

perform very well in 2DGE image denoising [5]. Bivariate

shrinkage has not been used for this problem before, but it

has been shown to perform well with natural images [8].

For a proper evaluation we need a large number of images

with the ”ground truth” known. Therefore, we have created

100 synthetic, noise free 2DGE like images (to be called from

now on Dataset1). Each image in Dataset1 has 512x512 pix-

els, 8-bits per pixel, and contains a randomly selected number

of spots, ranging from 50 to 1000. Every spot is modeled as

a 2D Gaussian function with a full covariance matrix. This

spot modeling assumption is considered realistic and is used

by most commercially available gel image analysis software

packages [9]. Finally, we have added white Gaussian noise

with standard deviation values σn = 10, 20, and 30 to each

synthetic image.

For extra validation purposes, we have also used another

set with 8 synthetic images (to be called from now on Dataset2)

generated by M. Roger’s group and downloaded from [10].

Those images are of larger size (1024x1024) and have been

created so as to exhibit the same statistical characteristics as

real 2D gel images [9]. This property has justified their use

in a comprehensive software packages comparison study [4].

Again, we have added noise with the same three variance lev-

els as for Dataset1.

4. RESULTS AND DISCUSSION
Our first goal was to determine the most appropriate filters for

the two CT stages. To do so we have tried the following filters

for the LP stage: pkva, 9/7, 5/3, coiflet (10 vanishing points),

Burt, haar, and for the DFBs: pkva, cd, 5/3, haar. Further-

more, we have considered 2 to 7 decomposition levels and 2

to 64 directions. As we move towards finer scales (levels), we

double the number of directions for DFBs in every scale or in
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CT Levels LP filter DFB filter Directions
Bayes 3 coiflet cd 4,8,8

Bivariate 4 coiflet pkva 4,4,8,8

WT Levels Wavelet - -

Bayes 3 coiflet - -

Bivariate 4 coiflet - -

Table 1. CT and WT best parameter set.

σn WT-Bayes CT-Bayes WT-Biv CT-Biv
10 40.07 40.56 39.58 40.82

20 35.59 36.11 34.89 36.09

30 33.04 33.63 32.30 33.36

Table 2. Mean PSNR values obtained for 100 synthetic 2DE

gel images (Dataset1).

every second scale. This increment is justified, since the more

detailed the level the more directions are needed to approxi-

mate the signal. Via extensive experimentation with Dataset1

we have determined the best number of decomposition levels

and directions. The best parameters we found for the CT and

the WT are summarized in Table 1 and are those used in all

other evaluation results reported in the paper.

Table 2 provides the mean PSNR value over all images of

DataSet1 when corrupted with one of the three noise levels.

We observe for the same shrinkage method the CT outper-

forms the corresponding WT at all noise levels. The CT ad-

vantage is approximately 0.5dB (1dB) when using BayesThres

(Bivariate) respectively. This is consistent with results ob-

tained in [6] using natural images. The same trends are ob-

served when using the larger and more realistic images of

DataSet2 (Table 3).

After having established the PSNR advantage of the CT

over the WT, we used a representative image from Dataset2

for which the ground truth is known, added considerable noise

(σn = 30) and evaluated the two transforms by comparing the

visual quality of the images resulting after denoising (Fig. 2).

We employed the Bayes shrinkage method that was shown to

work better with the WT. As we can see in Fig. 2 both meth-

ods suppress noise quite effectively. However, the WT dis-

torts spot borders much more than the CT. Due to the added

distortion, especially at the two faint spots (left- and right-

most), it is unlikely that segmentation will find their correct

boundaries.

To substantiate this claim, we performed Watershed seg-

mentation on the original image and on the denoised one (Fig.

2). In the noise free image the segmentation algorithm detects

five spots. Only three of them are detected in the WT-Bayes

denoised image (two faint spots are missed) and four in the

CT-Bayes denoised image. By inspecting the segmented im-

ages it is clear that in the WT case we get a lot of false posi-

tives spot features (due to artifacts introduced) and deformed

spot boundaries. In the CT case, the false positive artifacts are

much less and spot boundaries are much closer to the original.

These observations support our claim that CT-based denois-

ing by reducing false positive spots may impact positively on

σn WT-Bayes CT-Bayes WT-Biv CT-Biv
10 41.38 41.77 40.39 42.33

20 37.32 37.85 36.11 38.27

30 35.00 35.42 33.70 35.99

Table 3. Mean PSNR values obtained for 8 synthetic 2DE gel

images (Dataset2) [10].

the spot matching process. Furthermore, the improvement on

spot boundaries detection will translate to improved estima-

tion of spot optical densities and volumes, leading to more

accurate spot quantification and differential expression.

To further localize the effects of the two competing de-

noising schemes on image quality, we show in Fig. 3 a hori-

zontal image scan line (profile) that passes through the center

of the original image in Fig. 2(a). We can see that the CT-

denoised image exhibits an overall smooth profile (Fig. 3(d))

that approximates quite well that of the original image (Fig.

3(a)) and is less noisy than the WT-denoised image profile

(Fig. 3(c)). Moreover, the CT inserts much less distortions at

spot borders (see especially the faint spots profile at the two

ends of the five spots ”train” in Fig. 3 (samples 650 to 850

in the x-axis)). The small panels inside Fig. 3(c) and 3(d)

show the profile differences between the noise free and the

denoised images. We can see that differences (corresponding

to remaining unfiltered noise and introduced distortions) are

more profound in the case of WT, especially at spots borders

and at faint spot areas (e.g. see the faint spot in the region

from 100 to 250).

Fig. 4 shows the 3-D view of the same image area shown

in Fig. 2. With this view we can confirm that the WT in-

troduces apparent distortions even in the inner spot pixels.

Moreover, faint spots (the left- and rightmost in the ”train” of

5 spots) are severely distorted with WT-based denoising. An-

other observation is that WT-based denoising distorts consid-

erably background areas with no spots. This causes segmen-

tation to extract false spots (as shown in Fig. 3(c)) which may

mislead and complicate the matching of spots among techni-

cal replicate gels in a differential proteomics analysis.

The same general conclusions hold true when using Bi-

variate shrinkage. In this case the CT preserves better than the

WT the true intensity values of the more abundant non-border

spot pixels, but introduces more distortion (than BayesThres)

at the border pixels. This explains the larger (0.5dB) PSNR

advantage of the CT (relatively to the WT) when using Bi-

variate instead of BayesThres shrinkage.

5. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, this is the first attempt to use

Contourlets for 2DGE image analysis. We have compared

contourlets to wavelets for denoising gel electrophoresis im-

ages used extensively in biomarker discovery proteomics work-

flow. We have shown that the CT suppresses more efficiently

additive white Gaussian noise, preserves better the important
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(d) CT-Bayes

Fig. 2. Zoomed Image Area: (a) Original image, (b) Noisy

image (σn = 30), (c) Denoised with WT-Bayes and seg-

mented, (d) Denoised with CT-Bayes and segmented.

details (spot borders), and alters less than the WT the intensi-

ties of true spot features. Denoising is a critical step applied at

the beginning of the long pipeline of proteomics image anal-

ysis operations. Improving this step has a very positive effect

on the quality of subsequent operations, such as spot detec-

tion, spot modeling and volume estimation, thus contribut-

ing significantly towards the important goals of correct spot

matching and accurate spot quantification. Work in progress

includes investigating CT based methods for multiplicative

and impulsive noise removal from gel images.
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(a) Original image
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(c) WT-Bayes
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(d) CT-Bayes

Fig. 3. Image Scan lines: (a) Original image, (b) Noisy image

(σn = 30), (c) Denoised with WT-Bayes, (d) Denoised with

CT-Bayes.

(a) Original image (b) Noisy (σn = 30)

(c) WT-Bayes (d) CT-Bayes

Fig. 4. 3D view: (a) Original image, (b) Noisy image

(σn = 30), (c) Denoised with WT-Bayes, (d) Denoised with

CT-Bayes.
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