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ABSTRACT

Inspired by Paragious and Deriche’s work, which unifies
boundary-based and region-based image partition approaches,
we integrate the active contour(snake) model and the Fisher
criterion to capture, respectively, the boundary and region in-
formation of microarray images. We then use the proposed
algorithm to automatically segment the spots in the microar-
ray images, and compare our results with those obtained by
commercial software.

Index Terms— Microarray, Active contour, Snake, Fisher
criterion

1. INTRODUCTION

As the DNAmicroarray can simultaneouslymeasure thou-
sands of gene expression levels on the genomic scale, it has
enormous potential for biological, medical, and industrial ap-
plications [16, 7]. The fragments of genes, are spotted or
printed on an array matrix as probes to detect gene expres-
sions. Image processing techniques and statistical methods
are applied to determine the expression levels of the spots in
the microarrays in order to perform gene expression analysis.
According to Yang et al. [17], the processing of microar-

ray images involves spot gridding, segmentation, and inten-
sity extraction. The spot gridding task detects the positions of
the spot centers and identifies their coordinates [2]. Existing
commercial software provides semi-automatic algorithms to
deal with the problem. An accurate and automatic algorithm
for the case where the spot centers are smoothly distorted is
provided in [11].
The goal of segmentation is to classify a pixel as either

foreground inside a spot, or as background outside the spot. A
number of segmentation techniques have been proposed [14,
13], some of which assume that the geometry of the spots is
either a fixed circle or an adaptive circle [8]. However, the
assumption is incorrect because a spot’s morphology is not
always a circle. Other techniques use hypothesis testing to
segment the foreground and background [5], but this requires
modeling the pixel intensity distributions, which is a difficult
problem. Region growing based on the watershed algorithm
proposed in Spot [17] can segment regions of irregular shape
and does not need to model a region’s probability; however,
the segmentation results are not necessarily an optimization of

some class separation criteria. The objective of the intensity
extraction task is to calculate and normalize spot intensity in
order to derive quality measurements [15]. The segmentation
task is the focus of the present study.
For the spot segmentation task, we propose using the snake

model to capture boundary information and the Fisher crite-
rion to capture region information. The snake model [12] is
very effective in segmenting objects whose boundaries can
be approximately delineated by a set of large gradient points
along a contour. The spot boundary is such an example. The
Fisher criterion is based on discriminate analysis in statistics,
which uses between-class and within-class statistics to form
a criterion for class separation [9]. We adopt the Fisher crite-
rion because it is simple and can be analyzed mathematically.
The operation of a snake model is only semi-automatic

and the solution depends on the initial contour and the pa-
rameter values, both of which must be determined manually.
The difficulty of solving the problems of selecting good ini-
tial contours and parameters for images with various signal-
to-noise (SNR) levels prevents the model from operating au-
tomatically. Because of the enormous number of spots in mi-
croarray images, a semi-automatic process severely degrades
the throughput of microarray analysis. To resolve these diffi-
culties, we first modify the Markov chain Monte Carlo-based
Climber algorithm to find a good initial contour [3], and then
estimate the values of our parameters from that contour. Ex-
periments on several synthesized and natural images show
that it can find a good initial contour and estimate quality pa-
rameters. Using the proposed method, we segment the spots
in microarray images with various SNR levels, and compare
our results with those of GeneP ix Pro 5.0 [8] and Spot 2.0
[17].
The remainder of the paper is organized as follows. In

the next section, we introduce our model. In Section 3, we
present an automatic algorithm that finds a solution for our
model. In Section 4, we validate our model by comparing it
with other approaches. Finally, in Section 5 we present our
conclusions.

2. DESCRIPTION OF THE MODEL

For simplicity, we assume that there are only two regions
to be delaminated. However, the proposed model can be used
to detect more than two regions simultaneously.
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A. Energy Form
We define R = {I(x, y)} as an image of gray value pix-

els. A simple closed curve Γ = Γ(s) on R divides the image
into {R1, R2}, whereR = R1∪R2 and Γ = ∂R1∩∂R2. We
denoteM1 andM2 as the expected values of pixels in R1 and
R2, respectively. The total energy induced by contour Γ is
defined as the sum of the snake’s energy and the region’s en-
ergy. The former measures the properties along the contour,
while the latter measures the statistical differences between
the regions separated by the contour. The total energy Etotal

is written as

Etotal = Esnake + γ̃Eregion. (1)

in which

Esnake(Γ) =

�
Γ

(
α

2
|Γs|

2 +
β

2
|Γss|

2 − ‖� I‖2)ds (2)

We use the two-class Fisher discriminate criterion to repre-
sent Eregion as Eregion = Ewithin/Ebetween. where

Ewithin =

��
R1

(I −M1)
2 +

��
R2

(I −M2)
2

Ebetween = (M1 −M2)
2 (3)

The within-class distance Ewithin measures the scatter of
samples in R1 and R2 around their expected values and the
between-class distanceEbetween is the difference between the
expected gray levels of R1 and R2.
We propose an iterative algorithm to find the solution con-

tour of (1). The algorithm begins with an initial contour; then,
at each iteration, a new contour is obtained by alternating the
subsequent stages. In the first stage, by fixing the values of
the between-class distance Ebetween(Γ) and the model’s pa-
rametersα, β, and γ̃, the algorithm finds the curve Γ̂ that min-
imizes Etotal. In the second stage, we calculate the between-
class distance with respect to Γ̂. The parameter values are
then estimated by minimizing the mean square error (MSE)
of the Euler equation in (1) with respect to Γ̂, as shown in
Fig. 1.
B. Euler Equation
By applying Green’s theorem toEwithin in (3) and setting

γ = γ̃/Ebetween, we obtain

E(Γ) =

�
Γ

(
α

2
|Γs|

2 +
β

2
|Γss|

2 − ‖� I‖2)ds

+γ

�
Γ

L(s; vs, vss)ds

=

�
Γ

F (s; v, vs, vss)ds, (4)

where

F (s; v, vs, vss) = (
α

2
|Γs|

2 +
β

2
|Γss|

2 − ‖� I(v)‖2)

+γL(s; v, vs), (5)

in which v : [0, 1] → R
2; v(s) = (x(s), y(s)) = Γ(s);

and x, y ∈ C2([0, 1]). Using functional calculus the Euler

Fig. 1. Block diagram of our approach. First, we use the Climber
algorithm to find the initial contour. The parameters are then gener-
ated, and the contour’s energy is minimized. The process is repeated
after the statistics of the regions have been modified in the minimiz-
ing energy step.

equation for β = 0 becomes

−
∂‖ � I‖2

∂x
− αxss + γ[(I −M1)

2 − (I −M2)
2]ys = 0, (6)

−
∂‖ � I‖2

∂y
− αyss − γ[(I −M1)

2 − (I −M2)
2]xs = 0. (7)

The solution of the above can be obtained by an iterative
procedure similar to that in [12].Because Γss = [xss yss] =
κ�n, where κ is the curvature, and �n is parallel to [ys − xs],
(6) and (7) can be written as one equation:

−∇‖� I‖2 − ακ�n− γ
′[
(I −M1)

2 − (I −M2)
2

(M1 −M2)2
]�n = 0. (8)

This equation requires that a point on the optimal contour
must satisfy (9) in the tangent direction (�t), and (10) in the
normal direction (�n):

∇‖� I‖2 · �t = 0, (9)

−∇‖� I‖2 · �n = ακ+ γ
′[
(I −M1)

2 − (I −M2)
2

(M1 −M2)2
].(10)

Equation (10) indicates that the optimal contour balances
three terms: the first term is provided by the normal compo-
nent of the gradients of the image, the second term is propor-
tional to the curvature, while the last term measures the class
separation.

3. SOLUTION OF OURMODEL

To solve the Euler equation, we need the initial contour
and the model’s parameters. First, we describe methods for
obtaining the initial contour and estimating the parameters.
We then present an iterative algorithm that obtains the solu-
tion of our model.
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3.1. Initial Contour Detection

The snake-balloon approach tries to solve the initial con-
tour problem by adding an external force to the snake model
[6]. We adopt a different approach based on the Climber algo-
rithm [3], derives a stochastic ridge estimation method that is
easy to implement and remarkably robust against noise. The
algorithm randomly places a large number of independent
climbers in a time-frequency plane. Although each climber
moves with equal probability in the time direction, it is pre-
vented from moving in the frequency direction. However, it
is encouraged to climb to reach the peaks of the local en-
ergy functions by a Hastings-Metropolis penalization and a
temperature schedule similar to that in the simulated anneal-
ing algorithm. Thus, as the temperature approaches zero, the
climber settles on a suitable ridge contour. The flowchart of
the algorithm is given in Fig. 2 and illustrates the results of
applying the Climber algorithm to a heart-shaped image.

3.2. Parameter Estimation

After obtaining the initial contour, we need to determine
the values of the parameters. A contour is the solution of our
model if we can find the values of the parameters such that
the contour and the values satisfy the Euler equation. For
the case where there are no suitable values, we estimate the
parameters by minimizing the mean-square-error (MSE) of
the Euler equation with respect to the contour.
To estimate (α, γ) of a closed curve, we first select the

sample pixels Γ1. Let Γ1 = {(x(i), y(i))| i = 1, · · · , s} be the
sample points of the given contour, andK(i) = [(I(x(i), y(i))−

M1)
2− (I(x(i), y(i))−M2)

2]. The MSE e2
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1
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2

∂α
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2
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3.3. Alternative Refinement Algorithm

After initial contour detection, the algorithm estimates the
optimal parameters that minimize the MSE of the contour,
and then solves the Euler equation using the contour and the
parameters to obtain a new contour. The statistics of the re-
gion partitioned by the new contour are then updated, fol-
lowed by updating of the parameters. Based on the obtained
contour, and the updated statistics and parameters, at each it-
eration, the algorithm solves the Euler equation and generates
a new contour. The process is repeated until a certain stopping

criterion is reached. We use the t-test of the interior and exte-
rior regions separated by the contour as the measurement for
stopping. The algorithm stops if the t-test value of the current
contour is smaller than that of the previous contour.

Fig. 2. Left: block diagram of the Climber algorithm. Right: the
steps in the evolution of a climber’s contour from an input image to
the final result.

4. PERFORMANCE EVALUATION

We conduct experiments and evaluate the performance of
our algorithm on the microarray images of different manufac-
tured techniques. The experiment parameter for θ is 15% and
the threshold for obtaining Ĉ is the top 10% of the occupation
measure in C.
We evaluate and compare our spot segmentation results

with those obtained by other algorithms for two sets of mi-
croarray images. One set contains some poor quality images
from the Stanford Microarray Database (SMD) [10], while
the other contains Agilent 60-mer oligonucleotide microar-
rays whose specifications are given on the related web pages
[1]. In the experiments, we separate each spot region from
adjacent regions manually, and process the segmentation al-
gorithm inside each region. To evaluate the performance of
the proposed algorithm, we compare it with the representative
image analysis methods and software in GeneP ix Pro 5.0,
which detects spots by circular boundary adjustment, and
Spot 2.0, which detects spot regions by seed region grow-
ing. For the different segmentation results, we calculate the
two-sample t-test value between the gray level pixels in the
foreground and background, and use it to assess the perfor-
mance of a segmentation algorithm. As shown by the figures,
the distributions of the t-values of our method are statistically
larger that those of the other methods, which indicates that
the contours derived by our method generally yield better seg-
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mentation results.
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Fig. 3. Comparison of the t-test values of different methods. The
data set comprises the spots of subblock (2, 1) of the LC23N085

microarray image, which contains 784 = 28 × 28 spots, where
(a1)shows some results of our algorithm applying on different spots.
(a2)shows the histogram of the t-value difference between our algo-
rithm and that of Spot. (a3)shows the histogram of the t-value dif-
ference between our algorithm and that of GeneP ix Pro 5.0; (b1)
(b2) (b3) are the corresponding results on a subblock of an oligonu-
cleotide microarray image which contains 400 = 20× 20 spots.

5. CONCLUSION

We have integrated the snake model and the Fisher cri-
terion to segment spots in microarray images. The initial
contour is obtained by the robust Climber algorithm. The
segmentation problem is then solved with an iterative algo-
rithm, where the parameters of our model and the contour are
modified alternately until the t-value of the regions cannot be
improved further. The proposed algorithm’s performance is
superior because it is automatic and can segment the spots of
microarray images without human intervention. The exper-
iment results on microarray data manufactured by different
techniques also demonstrate that our algorithm outperforms
other methods.

6. ACKNOWLEDGMENTS

We would like to express our gratitude to Professor Wen-
Hsiung Li of the University of Chicago for insightful sugges-
tions.

7. REFERENCES

[1] Agilent Technologies,http://www.chem.agilent.com/scripts
/generic.asp?lpage= 10692&prodcol=Y.

[2] J. Buhler, T. Ideker, D. Haynor “Dapple: Improved Techniques
for Finding Spots on DNAMicroarray”, UWCSE Technical Re-
port UWTR 2000-08005, 2000. http://www.cs.wustl.edu/ jbuh-
ler/research/dapple/.

[3] R. Carmona, W.L. Hwang, B. Torr’esani, “Multiridge Detection
and Time-Frequency Reconstruction”, IEEE Trans. on Signal
Processing, vol. 47, no. 2, pp. 480-492, February 1999.

[4] D. Cremers, M. Rousson “Review of Statistical Approaches
to Level Set Segmentation: Integrating Color, Texture, Motion,
and Shape”, International Journal of Computer Vision, 2006,
To appear.

[5] Y. Chen, E. R. Dougherty, M. L. Bittner, “Ratio-Based De-
cisions and the Quantitative Analysis of cDNA Microarray Im-
ages”, Journal of Biomedical Optics, 2, 364-374, October 1997.

[6] L. D. Cohen, “On Active Contour Models and Balloons”,
CVGIP: Image Understanding, vol. 53, no. 2, pp. 211-218,
March 1991.

[7] M. B. Eisen, P. O. Brown, “DNA Arrays for Analysis of Gene
Expression”, Methods Enzymol 303, 179-205 (1999).

[8] GenePix Pro, http://www.axon.com/gn GenePixSoftware.html.

[9] K. Fukunaga, “Introduction to statistical pattern recognition”,
Academic Press, New York, 1972.

[10] J. Gollub, C. A. Ball, G. Binkley, K. Demeter, D. B. Finkel-
stein, J. M. Hebert, T. Hernandez-Boussard, H. Jin, M. Kaplper,
JC Matese, M. Schroeder, PO Brown, D. Botstein, and G. Sher-
lock, “The StanfordMicroarray Database: data access and qual-
ity assessment tools”, Nucleic Acids Res., 31(1):94-96, January
1, 2003.

[11] J. Ho, W. L. Hwang, H. H. S. Lu, D. T. Lee, “Gridding
Spot Centers of Smoothly Distored Microarray Images”, IEEE
Trans. on Image Processing, vol. 15, no. 2, pp. 342-353, Febru-
ary 2006.

[12] M. Kass, A. Witkin, D. Terzopoulos, “Snakes: Active Coun-
tour Models”, International Journal of Computer Vision, 1988,
pp.321-331.

[13] M. Katzer, F. Kummert, G. Sagerer, “Methods for Automatic
Microarray Image Segmentation”, IEEE Transactions on Nano-
Bioscience, 2(4):202-214, 2003.

[14] R. Nagarajan, “Intensity Based Segmentation of Microarray
Images”, IEEE Trans. Med. Imaging, 22(7), pp. 882-889, 2003.

[15] G.K. Smyth, Y.H. Yang, T. Speed, “Statistical Issues in cDNA
Microarray Data Analysis”, Methods Mol Biol., 2003;224:111-
36.

[16] M. Schena, D. Shalon, R. W. Davis, P. O. Brown, “Quantitative
Motoring of Gene Expression Patterns with a Complementary
DNA Microarray”, Science, Oct 20;270(5235):467-70, 1995.

[17] Y. H. Yang, M. J. Buckley, S. Dudoit, T. P. Speed, “Comparison
of Methods for Image Analysis on cDNA Microarray Data”,
Journal of Comuptational and Grahical Statistics, 11:108-136,
2002.

VI - 276


