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ABSTRACT
Tracing of curvilinear structures is one of the fundamen-

tal tools in the quantitative analysis of biological images, for

extracting information about structures such as blood vessels,

neurons, microtubules, and similar entities. Due to the limita-

tions in biological sample preparation and fluorescence imag-

ing, typical images in live cell studies exhibit severe noise

and considerable clutter. These images are manually ana-

lyzed through a laborious and approximate set of quantifica-

tion tasks. In this paper, we describe a constrained optimiza-

tion method for extracting curvilinear structures from live cell

fluorescence images. We show that the proposed method is

largely insensitive to frequent intersections, intensity varia-

tions along the curve, and generates successful traces within

noisy regions. We demonstrate the results of our approach on

live cell microtubule images.

Index Terms— Biomedical image processing, biomedi-

cal measurements

1. INTRODUCTION

In this work, we propose a robust curve tracing algorithm that

is insensitive to problems frequently encountered in fluores-

cence live cell images. Typically, these images exhibit high
clutter, such as frequent intersections and overlaps, with oc-

casional loss of signal along the curve appearing as gaps, and

high levels of noise due to sample fluorescence. A number of

potential applications exist in the analysis of biological struc-

tures from images, such as blood vessels, neurons, and micro-

tubules. Live cell studies rely on fluorescence imaging, which

presents atypical challenges for the analysis of these images,

Sec.1.1. We propose a constrained optimization method for

tracing curvilinear structures in severe noise and clutter. A

directional constraint is imposed on the optimization step that

minimizes the difference between the recorded image and the

best model-based approximation of it. We provide results on

actual microtubule images.

The rest of this paper is organized as follows. Next, we

briefly describe microtubules, related research, and the asso-
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ciated imaging and analysis problems. In Section 2, we re-

view related work. In Section 3, we describe the proposed

method. In Section 4, we provide experimental results. In

Section 5, we discuss our tracing method and results.

1.1. Analysis of Microtubule Dynamics in Live Cell Im-
age Sequences

Microtubules (MTs) are filamentous cytoskeletal structures

composed of tubulin protein subunits. These subunits can

add on, or dissociate from, the tubulin polymer rapidly, mak-

ing MTs highly dynamic. Through these dynamic behaviors,

MTs are critically involved in many essential cellular func-

tions, [1].

To obtain a quantitative description of MT behavior under

different experimental conditions, researcher track individual

MT tips from time lapse images of live cell MTs, Fig.1. Tra-

ditional MT dynamics parameters quantify statistics derived

from the growth and shortening events between consecutive

frames.

(a) (b)

Fig. 1. Consecutive time-lapse images of MTs taken at 4 sec. in-
tervals. Marked MT (arrow) grows in length. Oval region shows
increased fluorescence at intersections. Rectangular region shows
tips blending in surrounding noise.

Live cell MTs are imaged using fluorescence microscopy.

A particular problem of this technique is the sample fluores-

cence that severely degrades the image contrast and results

in uneven illumination levels due to non-uniform distribu-

tion of MTs. For example, high concentrations of the fluo-

rescent protein subunits cause considerable haze around the

MTs, Fig.1. Note that sample fluorescence causes consid-
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erable signal degradation in addition to the one introduced

by the imaging equipment. Furthermore, frequent intersec-

tions and overlaps cause intensity variations along the MT

body. Thus, typically only a few MTs are selected for manual

tracking which potentially provides a limited representation

of underlying dynamic behavior. For instance, while differ-

ent subsets of MTs undertake distinct tasks in the cell, and

therefore can exhibit distinct dynamic characteristics, gener-

ally there are limited means of observing such dynamics in

isolation through manual methods.

2. RELATED WORK

A number of tracing algorithms were proposed for extracting

curvilinear structures from images, such as the anisotropic

Gauss filtering, differential geometric properties of images

[2], and using active contour approaches [3]. In [4], the au-

thors propose a curvature-guided technique for tracing curves.

[5] improves upon [2] by constraining the linking procedure

of curve segments. Other examples include, region grow-

ing [6], exploratory algorithms [7], and the level set meth-

ods [8]. Most tracing algorithms are swayed by frequent in-

tersections and local variations of intensity along the curves.

For example, Fast Marching prefers higher intensity levels us-

ing the geodesic distance, Fig.5(c), and does not use direction

information along the curve. Thus, any neighboring structure

could steal the trace.

Sample fluorescence is solely dependent upon the distri-

bution of biological structures and generally is not adequately

addressed by conventional techniques such as deconvolution.

Tracing algorithms that use intensity information are sensi-

tive to variations along the curve, which is the typical case

in live cell images. Methods that are based on local gradient

information often fail when reliable gradients cannot be com-

puted around intersections. Segmental traces often fail when

extracting individual segments within the regions of dense in-

tersections becomes unreliable.

3. METHOD

In particular, our tracing algorithm addresses frequent inter-

sections, gaps, and noise around the structure. The key idea is

to propagate the trace from an initial point on the curve in all

directions and select the best trace whose convolution with a

kernel, representing the distortion, approximates the observa-

tion. For a given starting point on the structure, all possible

paths can be represented by a graph (tree) with a branching

factor of 8, where the vertices correspond to image pixels and

the edges correspond to the directional weights. Then, the

trace can be evaluated as the path from the root node to a leaf

node optimizing a criterion. However, the computational cost

of building the full graph is prohibitive.

We impose the following constraints on the construction

of the graph. Instead of examining all directions, in each

step we consider the best k candidate directions satisfying a

threshold on the second derivative along the normal to the es-

timated local trace direction, Fig.2.

Fig. 2. Iteratively constructed paths along the curve.

Candidates of the best direction provide considerable com-

putational savings as well as a stopping condition for the trace,

e.g. determining the leaf nodes. Since the degenerate case

of evaluating immediate neighbors in each step could cause

the trace to terminate unexpectedly due to gaps along the

curve, we consider candidates d pixels away from the previ-

ous node. This provides additional savings in computational

cost by limiting the depth of the graph.

Note that the extracted paths are binary estimates of the

curve being traced. In selecting the best path, we consider

the imaging distortion and minimize the error between the

observation, O(x, y), and the convolution of each binary path,

Bi(x, y), with a variable kernel, Ki(x, y), representing the

distortion on the trace.

3.1. Construction of candidate paths

We construct the space of source paths as follows. Since local

gradient information is highly sensitive to intersections, gaps

and noise, we predict the direction at every iteration based

on the previous trace points, and examine a neighborhood for

best candidate directions computed along the normal.

Let H(xs, ys) denote the Hessian at point (xs, ys). Then,

the eigenvectors of H(xs, ys) corresponding to the maximum

and the minimum absolute eigenvalues will give the normal

(vn) and parallel (vp) directions along the curve, respectively,

[4, 6]. In the absence of previous trace points, we start to

extend the curve Ci in vn and −vn, otherwise the previous

trace direction is taken as the initial estimate of the direction

at that step. In every step, we consider pixels (x′, y′), that are

d apart from the last trace point (xs, ys),

[x′, y′] = [xs, ys] + dvT
p (1)

Depending on the curvature at (xs, ys), the estimated position

of the next curve point, (x′, y′), may not be on the curve.

Therefore, it should be projected back onto the curve. We

consider a (−α,+α) degrees neighborhood of (vn) from the

previous step as follows. The candidate directions for trace

propagation will pass through the points {(x′, y′) + d∗cv
T
n }
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where, d∗c ∈ [−d, d] tanα , |vT
nH([x′, y′]T + d∗cvn)vn| > τ

and τ is the global threshold. Effectively, only those points

that satisfy the threshold on the second directional derivative

along vn are added to the graph. If no candidate meets τ then

the current node is assigned as a leaf node.

The line profile suggests that the first order derivative along

vn should also vanish at the center of the line. Therefore, fine

refinement with sub-pixel accuracy can be applied. Approxi-

mating the image with Taylor series up to second order terms

at [x, y] = [x′, y′]+d∗cv
T
n and equating the directional deriva-

tive along vn to zero yields,

d∗f = − vT
n∇O(x, y)

vT
nH(x, y)vn

(2)

Finally, the total refinement d∗t will be d∗c + d∗f .

An example graph constructed along the curve is shown

in Fig.2. By evaluating paths on this graph, we can optimize

the sum of local directions of a trace to conform with the ob-

servation.

3.2. Selecting the best path

Each Ci is constructed by traversing the graph from the root

node to each leaf node. Associated cost between the obser-

vation image O(x, y) and estimated source paths Ci are given

by

fi(κi) =
∑

x,y

|O(x, y) − Bi(x, y) ∗ Ki(x, y)|2 (3)

where Ki(x, y) is the convolution kernel that approximates

the combined effects of fluorescence emission and imaging

equipment. An inverse squared kernel, Ki(x, y) = κi/(1 +
x2 + y2), imitating the light propagation, or any log-concave

(e.g. Gaussian) PSF estimate of the imaging device are suit-

able kernels. Due to the fact that the resolution of the imaging

device is too coarse to detect individual fluorophore molecules,

the intensity observed at each pixel will reflect the density

of fluorophore molecules within that specific pixel. Further,

Bi(x, y) denotes the binary image formed by the superposi-

tion of the indicator functions I(xj
i , y

j
i ) for all ni points in

each path Ci,

Bi(x, y) =
ni∑

j=1

I(xi,j , yi,j) (4)

where, Ci represents the ith curve consists of ordered 8-connected

points

Ci = {(xi,1, yi,1), . . . , (xi,ni
, yi,ni

)}. (5)

3.2.1. Determination of κi

Once we have completed the tracing for Ci, we find the cor-

responding center value of the kernel, κi, by optimizing the

cost function fi(κi). The κ∗
i that minimizes fi(κi) is given

by

κ∗
i =

∑
x,y(B(x, y) ∗ K1(x, y))O(x, y)
∑

x,y(B(x, y) ∗ K1(x, y))2
, (6)

where K1(x, y) is the K(x, y) with κ = 1. Having ob-

tained the optimal cost function fi(κ∗
i ) for all paths, the best

path is then determined as the path that minimizes the optimal

cost function over all set of paths.

C∗ = argmin
i

fi(κ∗
i ) (7)

4. EXPERIMENTAL RESULTS

In evaluating our method, we traced MTs in live cell images

obtained from [9]. The ability of tracking individually se-

lected MTs is ultimately important for biological research.

Thus, an initial point on the curve is manually selected and

initial propagation directions are determined by the eigenvec-

tors of H, (vn) and (vp). The average width of MTs was

determined as approximately 3 pixels. Application specific

parameter values were found to be d = 5 and k = 3. Fig.3

shows the resulting traces on a toy example.

(a) (b)

Fig. 3. Example run on a synthetic image.

Fig.5 shows the resulting traces on actual MT images. In

all cases, estimated traces successfully handled intersection

points and intensity variations along the curve, despite the

noise.

We evaluated our algorithm for its effectiveness to han-

dle intersections. 100 intersections were randomly chosen,

out of which we counted the number of correct handling. In

some cases, encountered intersections were found to be too

ambiguous to decide the direction of the trace for human vi-

sion as well, Table 1.

Correct Incorrect Ambiguous

88 6 6

Table 1. Results of the proposed algorithm on handling the inter-
sections.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Original regions with intersecting MTs (a,c,e), and corre-
sponding traces (b,d,f).

(a) (b) (c)

Fig. 5. Original region with intersecting MTs (a), and corre-
sponding traces (b). Example Fast Marching trace favoring shorter
geodesic distance and overlooking intersections.

5. CONCLUSION

The most noteworthy contribution of the proposed algorithm

is the selection of the best trace from a set of candidate traces.

Note that the kernel is adaptive and is optimized per trace. It

is expected that not all points of the trace would lie exactly on

the curve because of the step size. This is necessary for skip-

ping gaps. However, the resulting trace points could easily be

adjusted to the curve with a postprocessing step.

Clearly, initial seed points can be automatically determined

independent of the algorithm. In the manual case, resulting

traces do not depend on the initial point selection, provided

that the initial point is not on a gap or intersection, potentially

due to the initial propagation based on H.

Finally, savings in computational cost can be given in terms

of the step size, d, and the depth of the graph, DG, as O(1/dDG).
For example, the graph contains only 1/(510) of all possible

nodes with a step size of 5 pixels at depth 10.
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