
HIERARCHICAL FEATURE FUSION FOR VISUAL TRACKING 
 

Alexandros Makris1, Dimitrios Kosmopoulos1, Stavros Perantonis1, Sergios Theodoridis2 
 

1 NCSR Demokritos, Intitute for Informatics and Telecommunications, Computational Intelligence 
Laboratory, 15310, Aghia Paraskevi, Athens, Greece {amakris,dkosmo,sper}@iit.demokritos.gr 
2 University of Athens, Department of Informatics, 15771 Athens, Greece stheodor@di.uoa.gr 
 

ABSTRACT 
 
A new method for object tracking in video sequences is presented. 
This method exploits the benefits of particle filters to tackle the 
multimodal distributions emerging from cluttered scenes. The 
tracked object is described by several models of different 
complexity, which are probabilistically linked together. The 
parameter update for each model takes place hierarchically so that 
the simpler models, which are updated first, can guide the search 
in the parameter space of the more complex models to relevant 
regions. This strategy improves the target representation because 
of the multiple models and reduces the overall complexity. The 
likelihood for each object model is calculated using one or more 
visual cues thus increasing the robustness of the proposed 
algorithm. Our method is evaluated by fusing on salient points and 
contour models and we demonstrate its effectiveness. 
 
Index Terms— tracking, sequential Monte Carlo. 
 

1. INTRODUCTION 
 
The problem of tracking consists of finding in the consecutive 
frames the location of a given scene object, which might be in a 
heavily cluttered environment, with varying illumination 
conditions and possible partial or full occlusions. In this work we 
are going to address the problem with Bayesian methods and more 
specifically the Sequential Monte Carlo (SMC) approximation 
methods [1], [2], [3], [4]. These methods are probabilistic and treat 
the location of the tracked object as a probability density function, 
which they attempt to estimate by drawing samples from it. The 
basic elements that those methods require are: an object model, a 
dynamic model and an observation model. The object model is the 
internal representation of the target. Its type varies according to the 
application, the most common being the contour, the bounding box 
or high level object specific models (e.g., human body model). 
Successful tracking is the correct estimation of the object model 
state. The dynamic model is used to predict the next state given the 
current one. The observation model links the object model to the 
data by calculating the likelihood of the object given the state. 
The SMC methods mentioned above, also known as particle filters, 
are a very popular approach to tracking [10], [11].  Their main 
advantage lies in their ability to cope with multimodal distributions 
such as those emerging from a cluttered environment. Their 
simplicity and low computational cost also contributes to their 
success. Additionally, they can be used to easily fuse different 
cues, a fact that we have exploited in this work. There are many 
works in the literature using particle filters with a single cue. The 
most commonly used cues in these approaches are the edges [10], 

the color and texture [7], [8], regions (blobs) [9], and motion 
information [6]. However, these approaches can only be applied 
under certain conditions, due to their incomplete object model. 
Contour trackers, for example, loose track when many clutter 
edges are present. Color histogram based methods perform poorly 
in the existence of many similar colored objects. To overcome 
these difficulties, several approaches for feature fusion have been 
recently appeared [12], [13], [14], [15], [18], [19], [20], [21]. Their 
goal is to achieve robust tracking by combining several of the 
above mentioned cues. However, most of these works have high 
complexity. These approaches differ in the way they fuse the cues. 
In [14], democratic voting is used to take a decision using the 
majority of the cues. A different approach uses color information 
as a proposal distribution to guide the main cue, which is the shape 
[12]. This way the method tries not to waste resources by 
searching in low likelihood areas. However, using solely color 
information is not adequate for the task because the background 
might contain similar colors.   In [15], partitioned sampling is used 
to reduce the search in the state space while using several features 
(sound, motion and color). However, these cues are used to sample 
different state components and if one of them fails to locate the 
target region the rest will not be able to recover from the failure. In 
[20] instead of a dynamic model, motion is used to guide the 
particles in order to account for current measurements. 

Our work follows the Bayesian tracking approach. We attempt 
to overcome the difficulties posed by the complex environment 
mentioned above by using several object models, which are 
updated hierarchically within the particle filtering framework. The 
algorithm is robust in various scene conditions and without any 
pre-adjustments selects and uses the best models for each situation. 
Each model uses several visual cues to define its likelihood 
function. In this paper, three cues are used: salient points within 
the object, the edges and the color histogram. To avoid the 
inefficient search in high dimensional spaces, the models are 
arranged in increasing complexity order and are updated 
hierarchically so that the simpler models are located first. This 
strategy enables efficient search in the parameter space and 
posterior estimation with significantly fewer samples despite the 
use of complex object models. Our framework enables the use of 
deterministic algorithms (e.g. KLT [5]) to track the simpler models 
(e.g., salient points). 

The rest of the paper is structured as follows. In Section 2 our 
proposed method is described after a brief introduction to Bayesian 
tracking and the SMC approximation. In Section 3 the 
measurement model and its connection to the proposed algorithm 
is explained. Section 4 contains the experimental results followed 
by some conclusions and future work at Section 5. 
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2. TRACKING ALGORITHM 
 

In this section we provide the background for Bayesian 
tracking and the SMC methods which will be used to explain the 
proposed method. Let { ; }tx t N  be an unobserved state 
sequence representing the true position of the tracked object and 
{ ; }tz t N   the observations for every time step, t. The Bayesian 
tracking consists of calculating the posterior 

1:( / )t tp x z  at every 
step, given the measurements up to that step and a prior 
(

0 0 0( ) ( / )p x p x z ). At each step the solution is expressed as: 

 1: 1
1:

1: 1

 
( / ) ( / )

( / )
( / )

t t t t
t t

t t

p z x p x z
p x z

p z z
 (1) 

In order to calculate the posterior we need to know the three terms 
involved in (1): Likelihood ( / )t tp z x  : This term can be 
calculated using the measurement model.  
Evidence:  1: 1 1: 1( / ) ( / ) ( / )t t t t t t tp z z p z x p x z dx  

Prior:  . 1: 1 1 1 1: 1 1( / ) ( / ) ( / )t t t t t t tp x z p x x p x z dx  

In most practical problems, including that of visual tracking, 
the analytical forms for the probabilities involved in the above 
relations are not available except for special cases (e.g., linear 
dynamics, Gaussian pdf’s). Therefore, approximation methods are 
commonly used. One family of such methods is the SMC, which 
uses samples (particles) to estimate the involved pdf’s [4]. Given N 
particles 

(n) N

t-1 n=1
{x } , at time t-1, which approximate the distribution 

1 1: 1( / )t tp x z , the SMC methods compute N particles  (n) N

t n=1{x } , 
which approximate the posterior 1:( / )t tp x z , at time t according 

to:   ( )

1

1ˆ ( / ) ( )n
t

N

N t t x
n

p x z x
N
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The steps of the general Sampling Importance Resampling 
(SIR) [4] algorithm are: 

• Sample from the proposal density function q: 
   ( ) ( )

0: 1 0:SampleFor 1 to from:   ( / , )  n n
t t t tn N x q x x z  

• For each sample evaluate the importance weights:  

  
( ) ( )

( ) ( ) 1
1 ( ) ( )
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n n t t t t

t t n n
t t t
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• Resample by multiplying or discarding particles 
according to their weight so that the resulting particle set will be 
un-weighted and with the same number of particles.  

A very common realization of this algorithm uses the transition 
prior ( )

1( / )n

t tp x x   as proposal distribution which means that the 
weights are updated by the likelihood  ( )( / )n

t tp z x  [11].  
The proposed algorithm is a particle filter based approach to 

the Bayesian tracking. As in SIR, the posterior is approximated by 
a set of samples which are propagated through time. This 
algorithm requires several measurement models of different 
complexity. These models are probabilistically linked, which 
means that, if we don’t know the state of a model, we can evaluate 
its conditional probability given the states of the other models. For 
each model, one or more visual cues are used to define the 
likelihood. The models are arranged in increasing complexity 
order. The simpler ones (e.g. a set of salient points within the 
object, a set of blobs with the same color or texture) are first. More 

complex models, such as parametric curves or human models may 
follow. Simpler models are easier to update but they are not robust 
and do not offer a detailed target representation. In contrast, 
complex models are more difficult to update but, on the other 
hand, they offer a very detailed target representation and if they 
are supported by multiple visual cues they become very robust. 
Here we use one so-called main model to define the target region, 
which is the most complex one and is the last to be updated. When 
a new frame arrives, the rest of the models are updated first and 
because they are linked to the main model they provide 
information about its expected position. We should note here that 
the number of models might change during tracking. As we 
mentioned above, only the main model is required for the target 
representation. This fact allows us to flexibly add or remove 
auxiliary models during tracking without affecting the 
representation of the target, which is very helpful in varying scene 
conditions. In the case of salient points, for example, a metric for 
the quality of each point is used. When this falls below a threshold 
the point is discarded. When the number of tracked points is low, 
new points can be added. The higher order models define the target 
and the search for new points takes place in that area. If it is 
impossible to find any points, due to illumination conditions, for 
example, then this model can be completely removed. In the 
classical particle filtering approach to tracking, the state evolution 
is used to produce the new samples. However, for models with 
many parameters many samples are required to sample adequately 
from the state evolution. A better proposal distribution using some 
sort of low level information from the current frame can improve 
the sampling efficiency [12]. Here we propose a model hierarchy, 
where the simpler models narrow the search space for the more 
complicated ones. The state can be written as:   

[1] [ 2 ] [ ][ , , ..., ]Mx x x x  where M is the number of models. Each 

model, [ ]ix , has Ki state parameters and the corresponding 

measurement parameters are [ ] , 1..iz i M . We assume that the 

conditional probabilities of a state of a model at time t, given the 
state of the others [ ] [ ]( /{ , 1.. , })i t j tp x x j M j i  are known. 

The likelihood [ ] [ ]( / )i ip z x  and the state evolution 

[ ] [ ] 1( / )i t i tp x x   for each model are also known. The update of the 

particle set for each model takes place in a predefined sequential 
fashion. When the particle set for a model is updated it is used to 
update the subsequent models. The steps of the algorithm are the 
following: 

1. Update, using the SIR algorithm, the state of the first model. 
If the first model allows it a deterministic algorithm (e.g. KLT) can 
be used instead of SIR. The proposal density used is the state 
evolution so the weights are updated by the likelihood: 

 ( ) ( )
[1] [1]0: 1 [1]0: [1] [1] 1( / , ) ( / )n n

t t t t tq x x z p x x    (4) 

           ( ) ( ) ( )
[1] [1] 1 [1] [1]( / )n n n

t t t tw w p z x   (5) 

In the case that KLT is used, the posterior is not approximated by 
particles but as a Gaussian centered at the position found by KLT. 

 2. For every other model, update the particles by sampling 
from the conditional distribution given the states of the previous 
models: 

( ) ( )

[ ] [ ]0: 1 [ ]0: [ ] [ ] 1 [ ] [1: 1]( / , ) ( / ) ( / )n n

i t i t i t i t i t i t i tq x x z p x x p x x  (6)                      
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3. Re-Evaluate the likelihood of the models given their updated 
positions. Evaluate the performance of each model and remove 
those who have lost track. At this step, models with low likelihood 
for every particle are removed. From the current target 
representation, maintained by the main model initialize new 
models if possible. This function may not take place at every 
frame but only when few models remain active. 

The proposed algorithm breaks the initial problem into M sub-
problems. As mentioned above, the models are arranged in 
increasing complexity order so that the simpler are updated first, 
which then guide the more complicated ones in relevant regions. 
This way, fewer particles are required to search efficiently the state 
space, leading to lower computational complexity and allowing the 
algorithm to be able to run in real time.  

 
3. APPLICATION: FUSION OF POINTS AND CONTOUR 

 
The proposed algorithm has the following requirements: i) the 
models’ complexity has to vary significantly; ii) one of the models, 
should define the target area (main model) iii) the conditional 
probabilities of a model, given the states of the rest, must be 
defined. Here we apply two models, the first one is simple and is a 
set of salient points (corners) within the object; the second one is 
more complex and is the contour of the tracked object (main 
model). The combined state vector becomes: [ ] [ ][ , ]SP Cx x x , 

where [ ]SPx  represents the salient points and [ ]Cx  represents the 

contour curve.  Each of those models may use several visual cues 
to define the likelihood. In this work, we use two cues for the 
contour (which is represented as a spline curve), the edge 
information and the color histogram. We first describe how we 
calculate the likelihood for each of these models and afterwards we 
will link them together by showing how the conditional 
probabilities are calculated. 

Salient Points: The feature is the weighted mean, of the tracked 
points. For each tracked object, Np points are used but each one of 
them is updated independently so the dimension of the search 
space does not increase with the number of points. The likelihood 
of this feature is determined by calculating the sum of squared 
differences of a rectangle around a candidate feature and the 
original. The parameters passed to the algorithm are the weighted 
mean point coordinates: 

[ ]
1

( ) ( )
Np

SP SSD
i

x v i L i  (8) 

Where ( )v i  are the image coordinates and ( )SSDL i the likelihood 
of the i-th point. The likelihood for this model is: 

Lp= [ ] [ ]
1

( / ) ( )
Np

SP SP SSD
i

p z x L i  (9) 

where z[sp] the mean of all measured points. 
As mentioned in requirement iii), we need the conditional 

probability of the curve’s position given the characteristic points. 
We assume that these points belong to the object so they must lie 
inside the curve. However, the object being tracked might not be 
rigid so these points might move relatively to the curve; therefore 

the model linking the points with the curve cannot be 
deterministic. Through the experiments we concluded that a simple 
Gaussian model is adequate to link them. Since we know the 
relative positions of the points and the curve, 

cpD , in the initial 

frame, we can calculate the estimated position of the curve at each 
step given the updated point positions and then sample from a 
Gaussian around this position: 

 
2

[ ]
[ ] [ ] 2

[ ]1
( / )= exp

22
SP t cp

C t SP t
rr

x D
p x x  (10) 

Contour: Here the total likelihood is estimated by a) considering 
how well the edges fit the current contour (exponential function of 
edge distance from curve) b) comparing, the histogram of the 
object that is surrounded by the contour with the template’s 
histogram using the Bhattacharyya distance. The total curve 
likelihood, CL , is the product of edge and histogram likelihoods 

LCH, LCE: [ ] [ ]( / )C C C CH CEp z x L L L  (11) 

A dynamic model is required to update the curve’s positions. 
Unless KLT is used, a dynamic model is also required to update 
the point’s positions. We assume that the frame rate of the video is 
high so that the positions of the curves at two consecutive frames 
are close to each other. The model used here is again a Gaussian 
around the previous curve’s position. This model is very simple 
but behaves very well with the proposed algorithm since it is used 
along with the information from the current point positions. 
 

4. EXPERIMENTS 
 
The experiments have been made in various grayscale videos and 
various objects have been tracked to verify the versatility of our 
tracker using the configuration of the previous section. The KLT 
algorithm has been used to update the points’ positions. The edge 
and the intensity histogram were used to define the contour’s 
likelihood. The test videos range from simple static camera 
sequences to very complex ones with moving camera, heavy 
clutter, illumination changes and partial occlusions. We compared 
our approach with the classical particle filter [11] and also with a 
modification which is based upon the classical but uses both edge 
and intensity histogram to calculate the likelihood and is similar to 
[21] in the way the cues are fused together though the later also 
incorporates structure information. The classical algorithm works 
well only in situations where no significant clutter exists and the 
target moves rather slowly. The approach that uses the histogram 
as well is more robust but outperformed by our method.  

In Figure 1 the benefits of the constant update of the salient 
point set are illustrated (the initial points are occluded as the object 
rotates). Our approach outperforms the other methods in that 
sequence because much less particles are required (50 versus 
500(classical) and 250(histogram)) and consequently the tracking 
is much faster (120 versus 30-45 fps). The sequence of Figure 2, is 
more challenging. The fast movement and the abrupt shape change 
of the target along with the heavily cluttered background lead the 
other methods to failure. Our methodology succeeded because of 
the collaboration between the two models, points and contour.  

Apart from qualitative we have also conducted quantitative 
experiments, which is very rare in the related literature probably 
due to lack of standard ground truth data. We have annotated 
several sequences by hand and we have calculated the following 
measures, tracker Detection Rate  (TDR) = TP / (TP + FN), and 
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false Alarm Rate (FAR) = FP / (FP + TP), where TP is the number 
of true positive pixels, FN the false negative and FP the false 
positive pixels. The target area was defined by a bounding box. In 
Table 1 we show the results on several sequences compared to the 
particle filter that uses edges and histogram. Because of the 
challenging nature of the selected sequences the classical particle 
filter using only edge information always failed after a few frames 
and thus is not included in the results.  The ‘caviar’ sequences 
mentioned on Table 1 are taken from CAVIAR project [17] 
(corridor view from the Shopping Center), which provides ground 
truth. The nature of the data didn’t allow the tracking of many 
salient points; therefore our method only slightly outperformed the 
other. The ‘tennis’ are challenging sequences similar to that of 
Figure 2. The ‘cars’ are sequences taken from traffic cameras. 

 
Figure 1.  Sequence with self occlusion. (50 particles, 120fps). 
Frames 1, 200, and 350. 

Figure 2. Tennis sequence (150 particles, 50fps).  Frames 1, 
100, and 200. 

Sequences Proposed Method Particle Filter 
Theme Clips Frames TDR FAR Np TDR FAR Np 
Tennis 5 800 87 16 150 20 90 500
Cars 4 1200 91 11 100 80 29 500
Caviar 20 5000 92 12 90 88 21 500
Total 29 7000 91 12  78 30  
Table 1. Tracking results of our method compared to the 
classical particle filter. Np is the number of particles used. 
 

5. CONCLUSIONS 
 
In this paper we proposed a particle filtering based tracking 
algorithm. The algorithm enhances significantly previous 
approaches in terms of robustness and speed by fusing several cues 
hierarchically in order to achieve robust tracking in various 
situations. To guide the search in the state space, several object 
models are used. The simpler ones are updated first and the 
subsequent use the information from the previous. Our 
experiments demonstrate that our framework is robust and fast. It 
handles occlusion, cluttered background and fast changes in 
position and appearance of the target very well. The proposed 
methodology can be extended by using more object models and by 
fusing additional visual cues.  
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