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ABSTRACT

This paper discusses object-based representation of video
shots acquired by a moving camera. Our approach uses an
extraction of foreground regions capable of representing se-
mantic objects of interest. However, foreground regions ex-
tracted by motion compensation are not always representative
of the entity they depict. A filtering and a clustering of these
regions allow us to retain only the most representative of each
real object in the shot, i.e. the key-object.

Index Terms— key-object, video representation

1. INTRODUCTION

The compact description of video content is currently a diffi-
cult task due to the large mass of data it contains. A classi-
cal shot representation consists in detecting key-frame(s) ex-
tracted with different features such as color, motion, . . .An
overview of the major techniques for key-frames extraction
can be reviewed in [1]. Recently, some researches are tend-
ing toward object-based representations [2, 3, 4, 5]. Two ap-
proaches can be considered: the first one consists in selecting,
in the shot, the frames which assist the key-object extraction
[2, 6]. The second approach consists in extracting, all shot
long, key-regions in order to collect information about these
regions and deduce a shot representation [7, 8, 4]. Themethod
proposed can be included in the second approach.
We use a foreground region extraction method based on

the irregular pyramid algorithm. The regions are extracted by
motion compensation to deal with any moving camera. The
segmentation process [9] is only localized on the foreground
region edges supposed to match with the edges of the real ob-
ject called in the sequel Object Of Interest (OOI). However,
only a subpart of the OOI may have a detectable apparent
motion between two frames. The OOI can also be partially
and/or temporally occluded. Thereby, it is often impossible
to extract in each frame a Video Object Plan (VOP) fully rep-
resentative of the OOI. The extracted regions are often only
Sub Video Object Plans (S-VOPs) not necessarily all repre-
sentative of the OOI (figure 1).
From a video first segmented into shots, we select in a

generic and automatic way a set of occurrences (i.e. S-

Fig. 1: Example of S-VOPs extracted from a non rigid OOI
(children video shot) with our method

VOPs) for each OOI (cf. fig. 2). The most represen-
tative occurrence is called key-object. Therefore, we pro-
pose the following generic chain of processes for each shot:

1. Extraction of the S-VOPs
2. Rejection of low quality S-VOPs
3. Color classification of the S-VOPs : one class per S-VOP
(generating S-VOP)

4. Suppression in each class of the S-VOPs that are not
spatio-temporally coherent with the generating S-VOP

5. Fusion of the classes to provide one class per OOI
6. Rejection of the classes temporally not relevant
7. Selection of the key-object for each class

Each stage of the process can be viewed as a black box pro-
vided with a finite number of inputs/outputs. In this way,
any of these boxes can be eventually replaced by another one,
more efficient or dedicated to a particular application.

Fig. 2: Example of processing using our method. Top left:
montage with 3 frames to give an overview of the shot. Top
right: the key-object extracted. Bottom: some S-VOPs ex-
tracted
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2. APPLICATIONS

Here, we enumerate a couple of applications that could benefit
from the key-objects extracted with our chain:

1. The intra-shot selection of the key-objects associated to
an inter-shots object clustering method [10] can provide
the entire video object-based description.

2. Any key-object can provide an automatic initialization
of a tracking method based on partition projection [11].
Other S-VOPs (key-views) can be used to control the
quality of the tracking throughout the shot here and there
and to solve occlusion problems (fig. 3).

3. Object-based indexing and retrieval.

(a) Survey of the major frames of the shot: green=key-object,
blue=key-views, red=occlusion area

(b) Some results of the tracking obtained

Fig. 3: Tracking controlled by a key-object and key-views

3. THE EXTRACTION CHAIN

3.1. Extraction of the set of S-VOPs

The extraction of the S-VOPs can be achieved using any tech-
nique that provides for each frame a set of masks of moving
entities. We used a fast technique that computes a paramet-
ric global motion model for each frame [12] coupled with an
accurate segmentation of the moving region borders [9]. This
step provides a set of masks (S-VOPs) for the whole shot,
each one attached to a frame number.

3.2. Rejection of low quality S-VOPs

Any S-VOP not representative of an OOI must be removed
from the S-VOP set. The rejection is based on 2 criteria: the
first one makes the assumption that a good S-VOP has a com-
pact shape while the second one requires a good matching
between the S-VOP boundary and the OOI boundary, as de-
scribed in this section.

3.2.1. Compactness: a discriminating feature

Any generic object extraction method induces some punctual
errors in the detection and extraction of S-VOPs. One of the

main drawback due to motion estimation is the "leak" from
the object to the background, or conversely. A feature of such
corresponding thin and/or elongated regions is a low com-
pactness. Compactness C1 of an S-VOP s is given by the
shape factor:

C1(s) =
Perimeter(s)2

4Π×Area(s)
(1)

C1 ∈ [1, ∞]. In the majority of processed video shots, we
have observed a principal mode for shape factor values near
1 representing compact regions. An empirical threshold fixed
to 2.5 permits to exclude any S-VOP not compact enough.

3.2.2. Edge quality evaluation

The S-VOP quality is given by the matching between its
boundary and the OOI boundary. Let z be the thick outline
of s and e the strong edges obtained by an adaptive threshold-
ing of the Sobel gradient in the original frame1:

z(s) = Dilatε(s) \ Erodε(s) (2)

ε is a structuring element whose radius is only a few pixels
(typically 6).

C2(s) =
card(e ∈ z(s))

Area(z(s))
(3)

(a) Original
frame

(b) Strong
edge points

(c) S-VOP (d) e and z

(in black)

Fig. 4: Quality measure of a S-VOP

A value ofC2(s) below a threshold S2 implies the rejection
of s. S2 is shot dependent: within a shot, the distribution of
the values of C2 is modeled by a Gaussian G(μ, σ): S2 must
not be too restrictive in order to keep a sufficient number of
S-VOPs. We chose:

S2 = μ(C2)− σ(C2) (4)

3.3. S-VOPs classification

At this stage, a lot of S-VOPs belong to the same OOI. This
section shows how they are clustered in n classes representing
the m OOI (in an ideal case, n should be equal to m). Color
remains the most representative intra-shot feature of an OOI
since its variations concern essentially its intensity [10]. Since
m is a priori unknown we use a 2 stages classification:

1A \ B = {x ∈ A and x /∈ B} .

VI - 306



1. Each S-VOP is considered as a potential key-object and
generates its own color class. In each class are gathered
all the S-VOPs similar in color. Then, to integrate the
spatio-temporal information, each color class is filtered
to obtain trajectory-coherent classes: each S-VOP that
does not verify the trajectory coherence is definitely ex-
cluded from the class.

2. Classes containing roughly the same S-VOPs are merged
to get n as close as possible to m: not relevant classes
(i.e. containing too few S-VOPs) are suppressed.

3.3.1. Color classification

Every S-VOP si generates its own color class characterized
by si’s color Gaussian mixture (classically 5 components).
Every other S-VOP sj with a similar (i.e. overlapping) mix-
ture can join the class of si. Of course, the different color
classes largely intersect each other.
To quantify the overlapping between two Gaussians, we

use the feature proposed in [13]: two Gaussians N (μ1, Σ1)
andN (μ2, Σ2) are c-separated if:

‖μ1 − μ2‖ � c
√

2 ·max(λmax(Σ1), λmax(Σ2)) (5)

With λmax(Σ1) and λmax(Σ2) the higher singular values of
covariance matrices Σ1 and Σ2. Two Gaussians 1-separated
or 1/2-separated significantly overlap. So, let mi and mj

be 2 Gaussian mixtures modeling si and sj . mi is included
in mj if and only if each Gaussian of mi is at the most 1-
separated with one of the Gaussians of mj . if mi ⊂ mj or
mj ⊂ mi then sj belongs to the class generated by si. The
use of mixture inclusion permits not only to put in the same
class similar S-VOPs. It is also a way to group subparts of a
given OOI.

3.3.2. Class filtering by trajectory control

To take into account the spatio-temporal information, each
S-VOP of a class is controlled to check if it has a speed vec-
tor compatible with the trajectory attached to the class: using
the position and the motion compensated speed of the gravity
centerGref of sref a reference S-VOP, the control consists in
iteratively searching the corresponding S-VOPs in the refer-
ence neighboring frames. The very first reference is the gen-
erating S-VOP sgen. The search is performed in each frame
of the shot in two steps: from sgen to the end of the shot, then
from sgen to the beginning of the shot. The search is made in
a circular window centered on the projection ofGref = (x, y)

having the speed �V = (dx, dy):

proj(Gref ) = (x + dx, y + dy) (6)

A candidate element si(t) is temporally coherent with the tra-
jectory of sref if and only if:

‖GSref
−GSi(t)‖ � r and

〈
�Vsref

· �Vsi(t)

〉
≥ 0 (7)

r is a research window radius relative to the radius of sgen.
In equation 7 the first condition ensures the spatial coher-

ence and the second ensures the conformity between the two
S-VOPs motion directions. In a given frame, the research is
processed with the following rules:
1. if no S-VOP gravity center is included in the research
window, the research continues in the next frame. The
window position is updated with sref speed vector.

2. if only one S-VOP verifies the conditions of eq. 7, it
definitely belongs to the class and becomes the new sref .

3. if several S-VOPs verify the conditions of eq. 7, they
are all kept in the class. The gravity center of the whole
becomes the new Gref and �Vsref

is calculated as their
mean speed.

4. Every S-VOP of which the gravity center is outside the
research window is excluded from the class.

3.4. Hierarchical class fusion

The color classification and the trajectory control produce
many classes that contain the same elements and that concern
the same OOI. In this section, we explain how these classes
are merged. The class aggregation consists in building a den-
drogram (i.e. a hierarchical classification) in which all the
classes are iteratively merged two by two. At each iteration,
only the best merge (corresponding to the best similarity in
our case) is performed. Then the dendrogram is split into
clusters.
The S-VOPs classes can be assimilated to sets and their

similarity can be evaluated from their intersection in set the-
ory. Let δ be the dissimilarity between two classes c1 and c2

verifying |c2| ≤ |c1|:

δ =
|c2 \ c1 ∩ c2|

|c2|
(8)

δ = 1 when the intersection is null. δ = 0 when c2 ⊂ c1. Let
be c3 = c1 ∪ c2. The dissimilarity between c3 and a class c is
set as follows:

δ(c3, c) = min[δ(c1, c), δ(c2, c)] (9)

The number of classes is then determined by a classifica-
tion of the dissimilarities. The aim is to maximize the inertia
between two sets Ei and Fi : let Ei be the dissimilarity set
≥ 0 and < i. Let Fi be the dissimilarity set ≥ i and < 1
(dissimilarities above or equal to 1 are excluded since they
indicate totally disconnected classes). Let be D = Ei ∪ Fi.
mD, mEi

, mFi
are the means of D, Ei, Fi. Then, the inertia

is given by:

Ii = wed(mEi
, mD)2 + wfd(mFi

, mD)2 (10)

Where we = |Ei|, wf = |Fi| and d is the Euclidian distance.
The best partition is obtained with an i value that maximizes
the inertia:

T = argmax
i

(Ii) (11)
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3.5. Suppression of the non temporally relevant classes

In this last filtering step, we propose to exclude the classes
which are not temporally relevant: a class contains S-VOPs
of which the first and the last apparitions are in frames ibegin

and iend. This induces the duration (number of frames) and
the persistence (apparition rate) of the class. We make the
hypothesis that an OOI takes place in a shot at least during
a significant duration Δ and is extracted p% of the time. Δ
and p are empirically fixed and permit to validate or exclude
classes. We chosedΔ = 50 i.e. 2 seconds and p = 20%.

3.6. Key-object selection

Now each class is supposed to contain several S-VOPs proper
to a given OOI. One key-object can then be selected for each
class c using equation 3 that estimates the segmentation qual-
ity of an S-VOP. The key-object is the S-VOP maximizing
this feature in a subset ĉ of c. ĉ is obtained as follows: as cri-
terionC2 is a percentage, small S-VOPs are privileged face to
big ones. To avoid this bias, we estimate the most represen-
tative interval of the areas of c: c is divided (by k-means) in
3 disjoint sets according to the S-VOPS areas: small, middle
size and large. ĉ is the subset giving the highest mean quality
C2. It provides the key-object.

4. EXPERIMENTAL RESULTS

Fig. 5: The 12 key-objets extracted from the Chavant video.
Left: the original frame. Right: the key-object

The key-objects extraction process presented in this paper
can provide almost an exhaustive extraction of key-objects
having a very good quality. The Chavant video (fig. 5) shows
a crossroad filmed with the camera hand held, panning and
(un)zooming. The video shot lasts 18 seconds (540 frames of
size 424 × 240). One can clearly count 14 moving OOI. 12
key-objects were extracted. Among them, 6 cars having very
similar gray colors and two pedestrians. The two missed ob-
jects were two white cars that only appeared in a small num-
ber of frames and that formed non temporally relevant classes.
The process was run on an Intel P4 2.8Ghz. The S-VOP

extraction (first stage) took 20mn while the other stages took
10sec. It is to be noticed that all the temporary results are
stored in image files and that the corresponding I/O are very

time consuming. To conclude, let’s point out that the method
is neither occlusion nor zoom sensitive. The obtained key-
objects can be used as robust references for many high-level
video processing.
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