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ABSTRACT

Tracking can be achieved using region active contours based on ho-
mogeneity models (intensity, motion...). However the model com-
plexity necessary to achieve a given accuracy might be prohibitive.
Methods based on salient points may not extract enough of these for
reliable motion estimation if the object is too homogeneous. Here
we propose to compute the contour deformation based on its neigh-
borhood. Motion estimation is performed at contour samples using
a block matching approach. First, partial background masking is ap-
plied. Since outliers may then bias the motion estimation, a robust,
nonparametric estimation using entropy as a similarity measure be-
tween blocks is proposed. Tracking results on synthetic and natural
sequences are presented.

Index Terms— Tracking, entropy, block matching, partial back-
ground masking

1. INTRODUCTION

The segmentation of video objects is a low level task required for
many applications, for example in cinematography. The term “ro-
toscoping” used in cinematographic post-production corresponds to
the all-digital process of tracing outlines over digital film images to
produce digital contours in order to allow special visual effects. The
segmentation is usually performed manually and frame by frame by
so-called animators. As a consequence, it is a long, repetitive, and
expensive task. The rotoscoping problem is too complex to define a
fully-automatic algorithm. In this paper, we focus on the tracking of
an object (i.e., the extraction of the object contour for all frames of
the sequence) given an initial, hand-edited contour in the first frame.
Some methods based on active contours use global (i.e., region) in-
formation [1, 2, 3]. They are usually based on a notion of (possibly
non-trivial) homogeneity of the object. Other active contour based
methods use motion information [4]. In both cases, if the object is
complex or has a complex motion, this description might be difficult
to establish and, in the end, not accurate enough to guarantee an ac-
curate tracking.
A local approach [5] proposes to estimate the contour motion from
a set of temporal trajectories of keypoints. The resulting tracking is
accurate and is robust to occlusions. However, there might not be
enough keypoints close to the object contour and, consequently, the
tracking may not be accurate enough. In particular, this can happen
if the object is rather homogeneous.
In this paper, we propose a tracking method based on the motion es-
timation of the contour neighborhood. The method is an active con-
tour method where the initial contour is hand-edited in the first frame

This work was partly supported by “Le Conseil Régional Provence-
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of the video, and the contour is deformed frame by frame. The con-
tour is discretized in a set of samples according to its representation
(polygon, spline, etc.). The contour motion is computed by estimat-
ing the motion of its samples with a block matching based method.
The first contribution of this paper is the use of partial background
masking. In image processing, motion estimation, and more gener-
ally, parameter estimation, is often based on parametric assumptions
(Gaussian, Laplacian, mixture models). However, these assumptions
may be false and, consequently, the parameters may not be estimated
correctly. The second contribution of this paper is a non-parametric
estimation using entropy as a similarity measure between blocks. In
practice, entropy is robust to outliers [6]. This property is essential
to circumvent the partial aspect of background, otherwise necessary.
According to the results on synthetic and natural sequences, the pro-
posed tracking method is accurate.
The paper is organized as follows: Section 2 presents a tracking
method based on a matching using partial background masking. Sec-
tion 3 improves the tracking by using a non-parametric approach.
Section 4 shows and discusses some tracking results. Finally, Sec-
tion 5 concludes.

2. MATCHING BASED ON PARTIAL
BACKGROUND MASKING

2.1. Context and classical approach

Let F1, · · · , Fn be the frames of a video. Let C1 be a hand-edited
contour in frame F1 segmenting the object of interest. Assuming
that the object contour Cm in frame Fm is known, the problem is
to compute the contour Cm+1 of the object in the next frame. The
motion of Cm will be estimated from the (inside) neighborhood of
the contour. To account for complex boundary deformation, the con-
tour is discretized and the motion estimation is performed locally at
every samples. The samples, moved by their local motion, are then
interpolated to form the new contour. The sample motion is assumed
to be a translation. This assumption does not restrict the overall mo-
tion of the object if Cm is discretized finely enough. In particular,
the object can be articulated. The motion of each sample is esti-
mated using a block matching approach [7]: a square block Bi is
centered on sample si and the block in frame Fm+1 corresponding
to the optimum of a given similarity measure defines the motion vi

of si

vi = arg min
u

X

x∈Bi

ϕ(rm(x, u)) (1)

where ϕ is a positive function to be defined, and rm(x, u) is the
residual Fm(x) − Fm+1(x + u). The function ϕ must be robust
to outliers. This condition excludes choosing the classical sum of
squared differences (SSD) criterion ϕ(r) = r2. Functions used in
robust estimation [8] could be chosen instead, in particular, ϕ(r) =
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|r| corresponding to the sum of absolute differences (SAD) criterion.
Note that the similarity measure (1) is minimal (and not maximal)
when the similarity between the blocks is maximal. For concise-
ness, the similarity measure will be called criterion in the following.
Starting from the classical block matching (1), the different evolu-
tions leading to the proposed method will be justified and illustrated
using two synthetic sequences (see Fig. 1) of 300 × 300 pixels. In
these sequences, a textured or homogeneous object is translated hor-
izontally by 4 pixels every frame. The background is fixed. Let us
denote these sequences Stex and Shom respectively. The study will
focus on two blocks Bl (left block) and Br (right block) of 33× 33
pixels centered around samples sl and sr of the object contour (see
Fig. 1).

Fig. 1. Object contour Cm in frame Fm of the synthetic sequences
Stex (left) and Shom (right). Block Bl (on the left side of the ob-
ject) and block Br (on the right side of the object) are respectively
centered on samples sl and sr .

2.2. Partial background masking

(a) SAD criterion for Bl (b) 2D profiles of the SAD criteria for
Bl (solid line) and Br (dashed line)

Fig. 2. SAD criterion on a search window of 15 × 15 pixels for the
blocks Bl and Br in sequence Stex. The profiles of the SAD crite-
rion for Bl and Br pass through their respective global minimum and
are parallel to the X-axis which represents horizontal motion. The
profiles were independently scaled to fit in the figure. The object mo-
tion estimation fails due to the presence of a majority of background
pixels.

As illustrated on Fig. 1, Bl and Br contain some background.
The proportion of background is even greater than the proportion of
object in this example. More generally, this observation is true if
the object is locally convex at sl and sr . Fig. 2(a) shows a plot of
the criterion for Bl in sequence Stex using the measure described
in (1) with ϕ(r) = |r| over a search window of [−7, 7] × [−7, 7].
Fig. 2(b) shows two profiles corresponding to the criteria computed

for Bl and Br . Due to the large majority of background pixels, the
global minimum of the criteria corresponds to the background mo-
tion. Actually, this is the correct behavior of a motion estimation
method. (Note the presence of a local minimum corresponding to
the object motion.) However, the problem here is to assign the ob-
ject motion to samples. Therefore, we propose to use the domain1

Dm defined by Cm as a mask. The block truncated with this mask
is denoted by Ωi = Bi ∩ Dm. The matching is then performed as
follows

vi = arg min
u

X

x∈Ωi

ϕ(rm(x, u)) . (2)

Fig. 3 shows that the motion is accurately estimated using truncation

Fig. 3. 2D profiles of the SAD criterion for Bl and Br in sequences
Stex (left) and Shom (right). The profiles were independently scaled
to fit in the figure. The motion estimation is accurate with Stex using
truncated blocks but it fails with Shom.

for the sequence Stex. However, if the object is relatively homoge-
neous as in sequence Shom, it might not contain enough structure to
allow a reliable motion estimation. The criterion appears flat inside
the object domain Dm: the solution of the motion estimation is not
unique. In such a case, the boundary can help finding the correct
motion by providing the necessary structure. The proposed way of
including the object boundary is to dilate Dm before masking Bi.
Let dn be the morphological dilation based on a circular structuring
element of radius n. The dilated version of Ωi is given by

Ω̃i = Bi ∩ dn(Dm). (3)

Then, the motion is estimated as follows:

vi = arg min
u

X

x∈Ω̃i

ϕ(rm(x, u)) (4)

Fig. 4 shows the profiles of the SAD criterion for Bl and Br as a

Fig. 4. 2D profiles of the SAD criterion for Bl (left) and Br (right)
for several values of the radius n of the morphological dilation for
the sequence Shom.

function of the radius n of the morphological dilation. (Note that

1Dm is the domain whose boundary ∂Dm is equal to Cm.
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a dilation of 0 pixels corresponds to the truncation presented pre-
viously.) It shows that, using the morphological dilation, the object
motion is accurately estimated in spite of the homogeneity of the ob-
ject, at least for a certain range of n. Indeed, if n gets too large, the
background becomes dominant and causes the motion estimation to
fail as mentioned previously. Consequently, n should belong to an
interval [nmin, nmax] where nmin > 0. One could look for an opti-
mal dilation radius by analysing the object and background textures.
Another approach is to choose the radius heuristically while modify-
ing the motion estimation method to enlarge the [nmin, nmax] inter-
val as much as possible by increasing nmax. Although SAD or other
functions used in robust estimation already ensure that nmax is not
too small, we propose to use a non-parametric approach potentially
more robust to outliers.

3. MOTION ESTIMATION USING NON-PARAMETRIC
ESTIMATION

While solving the problem of a possible lack of structure of a block,
the morphological dilation step proposed in Section 2.2 includes out-
liers (background pixels) in the motion estimation process. Motion
estimation using (4) implicitly corresponds to making a parametric
assumption on the distribution2 of the residual rm. For example, the
assumption made is a Gaussian distribution if ϕ(r) = r2 or a Lapla-
cian distribution if ϕ(r) = |r|. This assumption is false in general
(see below and Fig. 5) and, consequently, the motion may not be es-
timated correctly. We propose to remove the parametric assumption
by letting the motion estimation depends on the true distribution of
the residual. Since this distribution is unknown, it will be replaced
with an estimation p. The proposed criterion is the Ahmad-Lin ap-
proximation of the entropy [9] of the residual

vi = arg min
u
− 1

|Ω̃i|
X

x∈Ω̃i

log(p(rm(x, u))) (5)

where p is obtained using the Parzen method [10]. The choice of
this criterion was motivated by the fact that entropy is a measure
of dispersion and, ideally, the residual obtained for the true motion
is, informally speaking, a “Dirac delta function”, i.e., a distribution
with minimal dispersion.
Fig. 5 shows the residual distribution obtained with the true motion
of Bl in sequence Stex. The distribution has a main peak and some
lower peaks corresponding to the outliers (mismatches of the back-
ground pixels). The distribution is clearly not parametric.
Fig. 6 shows the profiles of Bl for sequence Stex for the entropy-
based criterion and the SAD criterion for two morphological dilation
radii. With both radii, the proportion of object pixels is greater than
the proportion of background pixels. The SAD criterion allows to
find the correct motion for the radius of 10 pixels but fails with the
radius of 14 pixels. The entropy-based criterion allows to estimate
the correct motion in both cases, which illustrates its better robust-
ness to outliers (in other words, nmax is larger).
Note that the robustness to outliers is not only required because of
the morphological dilation step. Indeed, suppose that this step is
removed. Contour Cm cannot be assumed perfect. It probably con-
tains some background. If, consequently, the motion estimation per-
formed on Ωi is disturbed, the contour in the next frame might con-
tain even more background and the tracking may fail after a few
frames.

2Parametric in the sense that the distribution is defined by a small set of
parameters, e.g., the mean and the variance for a Gaussian distribution.

Fig. 5. Close up of the distribution of the residual obtained with the
true motion of Bl for the synthetic sequence Stex.

Fig. 6. Comparison of the 2D profiles of the SAD and entropy-based
criteria for Bl on sequence Stex. The morphological dilation radius
is n = 10 pixels for the left figure and n = 14 pixels for the right
figure. The use of the entropy-based criterion increases the robust-
ness of the motion estimation to outliers.

4. EXPERIMENTS

In this paper, a spline curve is used to represent contour Cm. Ac-
tually, Cm is discretized into samples si and is interpolated by a
spline curve. The motion vi of si is estimated using (5), and Cm+1

is represented by the spline interpolating samples si + vi. However,
the proposed method does not depend on the contour representation.
Indeed, if the object boundary has sharp edges, contour Cm should
probably be represented by a polygon whose vertices are the samples
si.

Criterion 5 was minimized using a fast, suboptimal search within
a search window [11].

Fig. 7. Tracking on sequence Soccer. The left figure shows the ini-
tial, hand-edited contour C1 on frame F1. The right figure shows
the computed contour C5 on frame F5 (solid line) with C1 superim-
posed (dashed line).

The proposed method has been tested on two natural SD (SD=704×
576 pixels) video sequences. Sequence Soccer (see Fig. 7) shows a
man walking and sequence Ice (see Fig. 9) shows a woman skating
backward. The motion of these two characters is articulated. The
size of block used for the experiments was 33× 33 pixels.
Fig. 8 presents the percentage of misclassified pixels (the area of
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Fig. 8. Comparison of the SAD and entropy-based criteria. The left
figure shows the percentage of misclassified pixels (the area of the
symmetric difference of the mask of the computed segmentation and
the mask of a handmade, ground truth segmentation) as a function
of the morphological dilation radius for both the parametric (SAD)
and the non-parametric (entropy) approaches. Beyond a dilation ra-
dius of 22 pixels (22 ≈ √

2blocksize
2

), the motion estimation uses
no background masking. The figures on the right show (from left
to right) the tracking using SAD and the tracking using the entropy-
based criterion on frame F5.

Fig. 9. Tracking on sequence Ice. The left figure shows the initial,
hand-edited contour C1 on frame F1. The right figure is a close
up of the computed contour C5 on frame F5 (solid line) with C1

superimposed (dashed line).

the symmetric difference of the mask of the computed segmentation
and the mask of a handmade, ground truth segmentation) as a func-
tion of morphological dilation radius for both the parametric (SAD)
and the non-parametric (entropy) approaches and for 5 frames of
the sequence Soccer. The ground-truth has been hand-edited frame
by frame. Note that a dilation of 22 pixels (22 ≈ √

2blocksize
2

)
corresponds to consider no background masking as exposed in Sec-
tion 2.1.
First, we note that the use of partial background masking allows to
decrease the percentage of misclassified pixels in comparison to the
use of full background masking or no background masking. More
precisely, the decreasing is approximately 40% for the parametric
approach and up to 45% for the non-parametric one. Moreover, the
optimal radius for both criteria, equal to n = 10 pixels, corresponds
neither to full background masking nor to no background masking.
This indicates that the object is both textured and homogeneous.
Second, we have already shown on synthetic experiments that the
use of entropy-based criterion increases the robustness to outliers
(background pixels added by the morphological dilation) of the mo-
tion estimation. Fig. 8 confirms this behavior on real conditions. In-
deed, beyond the global minimum, we note that the increasing of the
percentage of misclassified pixels is more important using paramet-
ric approach (SAD) than non-parametric approach (entropy). The
entropy-based criterion more robust to outliers.
Finally, Fig. 7 and Fig. 9 present the computed contours on frame F5

with the initial contour superimposed. In both sequences, the charac-

ters are accurately tracked in spite of the articulated motion and the
presence of homogeneous region. The radius n of the morphological
dilation used was 10 pixels.

5. CONCLUSION

We proposed a tracking method based on a contour motion estima-
tion using a local, robust similarity measure. The motion is estimated
at contour samples using a block matching approach with partial
background masking. This allows to remove most of the outliers
(background pixels) while accounting for the object boundary in or-
der to have enough structure in case the object is homogeneous. The
motion estimation using a classical criterion may be biased since the
partially masked block contains some outliers. In contrast, the use
of the proposed nonparametric, entropy-based motion estimator sig-
nificantly increases the robustness to outliers.
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[5] V. Garcia, É. Debreuve, and M. Barlaud, “A contour tracking
algorithm for rotoscopy,” in IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), May
2006.

[6] S. Boltz, E. Wolsztynski, E. Debreuve, E. Thierry, M. Barlaud,
and L. Pronzato, “A minimum-entropy procedure for robust
motion estimation,” in IEEE International Conference on Im-
age Processing (ICIP), Atlanta, GA, USA, October 2006.

[7] T. Koga, K. Linuma, A. Hirano, Y. Iijima, and T. Ishiguro,
“Motion compensated interframe coding for video conferenc-
ing,” in National Telecommunications Conference (NTC), New
Orleans, LA, USA, 1981.

[8] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Bar-
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