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ABSTRACT

This paper deals with region-of-interest (ROI) segmentation in video
sequences. The goal is to determine in successive frames the region
which best matches, in terms of a similarity measure, a ROI defined
in a reference frame. Color and geometry can be combined in a joint
PDF. However such high-dimensional PDFs being hard to estimate,
measures based on PDF distances may lead to incorrect segmenta-
tions. Here, we propose to use an estimate of the Kullback-Leibler
divergence adapted to high-dimensional PDFs. It is defined from
the samples using the kth-nearest neighbor (kNN) framework and it
is differentiated for active contour implementation and expressed in
both the continuous form and a kNN form. Results are presented on
standard sequences.

Index Terms— Segmentation, similarity measure, multivariate
distributions, multimodal distributions, kNN, active contour

1. INTRODUCTION

The goal of region-of-interest (ROI) segmentation is to determine
in successive frames the region which best matches, in terms of a
similarity measure, an ROI (user-)defined in a reference frame. A
similarity measure is a distance between two data sets, the reference
data set and a candidate, or target, data set. In the discrete frame-
work, each data set is composed of one data vector per pixel of the
region. If the similarity measure does not necessarily make use of a
one-to-one match between the pixels of the regions.

Two aspects of similarity measures between the reference region
and a target region can be distinguished: radiometry, which indicates
if the regions have similar color distributions, and geometry, which
correlates where these colors are present in each regions. Similar-
ity measures based solely on radiometry include distances between
color histograms or probability density functions (PDF). For exam-
ple, the Bhattacharya distance was used in tracking [1]. However,
the absence of geometric information implies that several candidate
regions can appear as good matches.

As an alternative, geometry can be added by means of a motion
model used to compute the pointwise residual between reference and
candidate regions. A function of the residual can serve as a sim-
ilarity measure, classically, the sum of squared differences (SSD),
functions used in robust estimation such as the sum of absolute dif-
ferences (SAD), or statistic measures [2].

The geometric constraint can be soften by adding geometry to
the PDF-based approach, i.e., by defining a joint geometric/radiometric
PDF [3]. This later approach leads to high-dimensional PDFs. Al-
though there are efficient [4] methods to estimate multivariate PDFs
using Parzen windowing, limitations appear when the dimension of
the domain of definition of the PDFs increases. This is described
in [4] as the curse of dimensionality: as the dimension of the data

space increases, the space sampling gets sparser. Dilating the Parzen
window is not a satisfying solution since it implies over-smoothing
of the PDFs. Consequently, PDF-based similarity measures might
not be estimated accurately enough for segmentation. To overcome
this high-dimension problem, a PDF estimate based on a k-th near-
est neighbor (kNN) search was proposed [4, 5, 2] and used to define
a consistent entropy estimate [6].

Segmentation using color distributions [7] or pointwise resid-
ual [8] has already been considered in the litterature. However, these
two methods have limitations, recents methods try to combine mul-
tiple features (spatial data, gradient, wavelets, motion) to perform
accurate matching [3] or segmentation [9]. The PDFs are then high-
dimensionals and some assumptions have to be made (e.g.: indepen-
dence between components, gaussian assumptions).

This paper has two main contributions in segmentation. First we
propose to compute the Kullback-Leibler divergence, or distance,
between high-dimensional PDFs using the kNN framework. This
new estimate is efficient for high-dimensional PDFs [6, 5] with very
weak assumptions on the PDFs. Second, we propose to apply in
segmentation, a joint radiometric/geometric called feature-spatial [3,
10], originally proposed in bounding box tracking. The equations for
a complete, kNN-based active contour implementation are provided.

This paper is organized as follows. Section 2 defines the Kullback-
Leibler distance on geometric/radiometric data, it presents state-of-
the-art methods to estimate it, the Ahmad-Lin entropy estimation,
the Parzen windowing method, and the limitations when combining
both. Section 4 presents the kNN approach and the kNN-based ex-
pression of the Kullback-Leibler distance. Section 3 plugs this dis-
tance in a segmentation method through active contours. Sections 5
provide some results of segmentation performed on two standard se-
quences. Finally Section 6 concludes and gives some perspectives.

2. PROBLEM STATEMENT

2.1. Similarity measures with a soft geometric constraint

Let Iref and Itarget be, respectively, the reference frame in which the
ROI ΩR is (user-)defined and the candidate, or target, frame in which
the region ΩT best matches the ROI, in terms of a given similarity
measure, is to be searched for. This search amounts to finding the
region ΩT which minimizes

J(ΩT ) = D(Iref(ΩR), Itarget(ΩT )) (1)

where D is a similarity measure, or distance, between the two sets of
data. ΩT and ΩR are subsets of R

2 (or subsets of N
2 in the discrete

framework).

For clarity, the reference data set Iref(ΩR) will be denoted by
R and the target data set Itarget(ΩT ) will be denoted by T . Thus,
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R(x) resp. T (x), x ∈ ΩR resp. x ∈ ΩT , represent corresponding
samples from their respective region. Traditionally, R(x) and T (x)
are a triplet of color components in a given color space, e.g., RGB or
YUV.

Two aspects of similarity measures can be distinguished: ra-
diometry which indicates if the regions have similar colors and ge-
ometry which correlates where these colors are present in the re-
gions. Measures based solely on radiometry include distances be-
tween the probability density functions (PDF) of the color informa-
tion in the regions.

A widely used distance is the Kullback-Leibler divergence, or
distance,

DKL(T, R) =

Z
Rd

fT (α) log
fT (α)

fR(α)
dα (2)

= −H(fT ) + H×(fT , fR) (3)

where fT is the PDF of data set T , fR is the PDF of data set R, H is
the Shannon entropy and H× is the cross entropy, also called relative
entropy or likelihood.

The geometric constraint can be soften by expressing it in the
PDF-based approach, i.e., by adding geometry to the original radio-
metric data [3]. Formally, the PDF fR(α) resp. fT (α) is built on
α = T (x) = {Itarget(x), x} for x ∈ ΩT resp. on α = R(x) =
{Iref(x), x} for x ∈ Ωref . The PDF is now built on a joint geomet-
ric/radiometric data set of the reference region and the target region:
R(x) and T(x) are now 5-dimensionals (three color components and
two spatial components).

2.2. Spatial features registration

Although the geometric constraint is soft, we can improve the match-
ing by aligning the spatial features from the reference frame to the
target frame. The spatial features of R are registered on the spatial
features of T by transforming the spatial features of R: R(x) =
{Itarget(x), x + ϕ(x)} where ϕ is the transformation of the object
from the frame R to frame T . For coherence with the segmentation,
the transformation is estimated with the same energy

ϕ = arg min
ϕ

DKL(fR, fT ). (4)

R and T are now data sets {Iref(x), x + ϕ(x)}, x ∈ ΩR, and
{Itarget(x)), x}, x ∈ ΩT , respectively, where ϕ is a geometric
transformation representing the motion of the ROI between the ref-
erence frame and the target frame. Estimation (19) being provided
in the discrete framework, it is not differentiable. Its minimization
could be performed by an exhaustive search procedure in a search
window. For computational considerations, it will be performed us-
ing a suboptimal search procedure, the diamond search.

3. SEGMENTATION USING ACTIVE CONTOURS

3.1. Ahmad-Lin estimate of entropy and Parzen windowing

ΩU defining dataset U = {I(x), x} for x in ΩU (U being either T
or R, ΩU being either ΩT or ΩR) has the following Shannon entropy

H(U) = −
Z

Rd

fU (α) log fU (α) dα (5)

It can be rewritten from the Ahmad-Lin estimate [11]

ĤAL(fU ) = − 1

|U |
Z

ΩU

log fU (U(x)) dx (6)

where |U | is the area of ΩU . Since the actual PDF fU is unknown, it
must be estimated. A common practice is to use the non-parametric,
Parzen windowing method. The Parzen method for PDF estima-
tion makes no assumption about the actual PDF. Consequently, the
estimated PDF cannot be described in terms of a small number of
parameters, as opposed to, say, a Gaussian distribution defined by
its mean and variance. This method is therefore qualified as non-
parametric. It approximates the density at sample s with the relative
number of samples k(s)/|U | falling into the open ball of volume v
centered on s

f̂U (s) =
1

|U |
X

x∈ΩU

Kσ(s− U(x)). (7)

3.2. Shape derivative

The energy to be minimized through active contours is the kullback
leibler distance (19). In addition, as the distribution of the object can
be characterized by a subregion inside the object, we propose to add
a maximum area constraint with a weighting λ

J(T ) = DKL(T, R)− λ|T |. (8)

Using (6), this energy can be rewritten as follows

J(T ) =
1

|T |
Z

ΩT

log fT (T (x)) dx (9)

− 1

|T |
Z

ΩT

log fR(T (x)) dx− λ|T |, (10)

showing the dependencies with respect to the domain ΩT . There-
fore, we propose to rely on the shape derivative framework [7] to
determine the derivative of (9) with respect to ΩT in the direction V .
Neglecting the shape derivative of the distribution fT , we obtain

dJr(T, V ) =

Z
∂ΩT

A(s)V (s) ·N(s)ds (11)

where N is the inward unit normal to ∂ΩT and with

A(s) =− 1

|T | (DKL(T, R)− log fT (s) + log fR(s))

+
1

|T |2
Z

ΩT

„
1− Kσ(T (x)− T (s))

fT (T (x))

«
dx + λ. (12)

The minimization of the energy is then performed using the ac-
tive contour technique [8, 7] using a B-spline implementation. An
initial contour is iteratively deformed according to V chosen such
that derivative is negative or equal to zero at each iteration. The
minimum is reached when the derivative is equal to zero. The cor-
responding shape of the active contour represents the segmentation.
To ensure the negativity of the shape derivative, we choose

V (s) = −A(s) N(s). (13)

Let us remind that the PDF is built on a joint geometric/radiometric
data set of the reference region and the target region: R(x) and
T(x) are now 5-dimensional (three color components and two spatial
components). Consequently, the PDF domain of definition becomes
high-dimensional. The sparsity of this high-dimension data space
makes the PDF estimation, and therefore the similarity measure es-
timation, even more problematic. Let us present a new framework
for computation high dimensional PDFs and the Kullback-Leibler
distance.
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4. THE K-TH NEAREST NEIGHBOR (KNN)
FRAMEWORK

The first difficulty in using the Parzen method (see (7)) is the critical
choice of the window size σ [4]. Another difficulty is due to what is
informally called the curse of dimensionality. As the dimension of
the data space increases, the space sampling gets sparser. Therefore,
less samples fall into the Parzen windows centered on each sample,
making the PDF estimation less reliable. Dilating the Parzen window
does not solve this problem since it leads to over-smoothing the PDF.
In a way, the limitations of the Parzen method come from the fixed
size of the window: the method cannot adapt to the local sample
density.

The k-th nearest neighbor (kNN) framework provides an advan-
tageous alternative. It allows to estimate the entropy of a PDF di-
rectly from the data set, i.e., without explicitly estimating the PDF.
Nevertheless, this entropy estimate derives from the kNN PDF esti-
mation method [4], p. 181. This method shows good performance
for multivariate data [5].

4.1. Locally adaptive PDF estimation

In the Parzen method, the density of U at sample s is related to the
number of samples falling into a window of fixed size σ centered on
the sample (see Eq. (7)). The kNN method is the dual approach: the
density is related to the size of the window σ necessary to include its
k nearest neighbors. Let us note σ(s) = ρk(U, s) the distance to the
k-th nearest neighbor of s among the data set U .

This variable size estimate is called locally adaptive. It can be
performed it two different ways. The first way is called balloon esti-
mate [5]

f̂U (s) =
1

|U |
X

x∈ΩU

Kσ(s)(s− U(x)) (14)

u.k.
=

k

vd |U | ρd
k(U, s)

(15)

where vd is the volume of the unit ball in R
d. The kernel size

σ(s) = ρk(U, s) depends on the point s where f̂ is evaluated. Ex-
pression (14) can be reduced to the simple expression (15) when
Kσ(s) is a uniform kernel. The second way is called sample point
estimate [5]

f̂U (s) =
1

|U |
X

x∈ΩU

Kσ(U(x))(s− U(x)). (16)

The kernel sizes σ(U(x)) = ρk(U, U(x)) depend on the samples
U(x).

We will consider the balloon estimate as it is the underlying PDF
estimate in the kNN expression of entropy. However, we will discuss
later how the sample point estimate can be useful. Although the
distance is usually computed in the Euclidean sense, other distances
can be used. Let us remind that the data are a subset of R

d with
d = 5. The choice of k appears to be a much less critical than the
choice of the window size in the Parzen method. Actually, when the
kNN approach is used for parameter estimation, k must be greater
than the number of parameters and such that k/|U | tends toward
zero when both k and |U | tends toward infinity. A typical choice is

k =
p|U |.

4.2. Kullback-Leibler Distance estimation

Based on the Ahmad-Lin entropy estimate (6) and the kNN PDF
estimation (14), a consistent and unbiased entropy estimate was pro-
posed with a proof of consistency under weak conditions on the un-
derlying PDF [6]. The kNN estimate of the Shannon entropy is equal
to

ĤkNN(fT ) = log(vd (|T | − 1))− ψ(k) + d μT (log ρk(T )) (17)

where μT (g) is the mean of g for all the values taken over data set T
where ψ is the Polygamma function Γ′/Γ. Note that estimate (17)

does not depend on the PDF f̂T . Informally, the main term in esti-
mate (17) is the mean of the log-distances to the k-th nearest neigh-
bor of each sample.

In the same framework, the cross entropy of two data sets R and
T can be approximated by

Ĥ×,kNN(fT , fR) = log(vd |R|)−ψ(k)+d μT (log ρk(R)). (18)

Note again that estimate (18) does not depend on any PDF and that
its main term is the mean of the log-distances to the k-th nearest
neighbor among data set R of each sample of T . Finally, since the
Kullback-Leibler distance is a difference between a cross entropy
and a Shannon entropy (see Eq. (2)), the kNN estimate of this dis-
tance is equal to

DKL(T, R) = log
|R|

|T | − 1
+ d[μT (log ρk(R))− μT (log ρk(T ))]

(19)

4.3. kNN-based shape derivative

Using the expression (15) for fR and fT and the expression (19) for
DKL, the shape derivative (12) is equal to

A(s) =− d

|T | [μT (log ρk(R))− μT (log ρk(T ))

− log ρk(R, s) + log ρk(T, s)] + λ

+
1

|T |

2
41− 1

k

X
x∈ν(T,s)

„
ρk(T, x)

ρk(T, s)

«d
3
5 (20)

where ν(T, s) is the support of Kσ(T (s)), the uniform kernel cen-
tered at T (s) of half width ρk(T, s) (see Eq. (15)). By definition,
there are exactly k samples in ν(T, s).

Keeping expression (15) for fR and fT but replacing Kσ with
Kσ(T (x)) (the approach of (16)), the sum in (20) turns into the car-
dinality of {x|s ∈ ν(T, x)} since ρk(T, s) at the denominator be-
comes ρk(T, x).

5. EXPERIMENTAL RESULTS

In this section we will compare two methods, the Kullback-Leibler
distance computed through kNN but with no geometry kNN-KL (no
spatial features, R and T are 3-Dimensionals) and the Kullback-
Leibler distance computed through kNN with geometry kNN-KL-
G (spatial features, R and T are 5-Dimensionals). k of the kNN
framework is set to 3. The reference histograms for kNN-KL and
kNN-KL-G are built over a region ΩR on frame 1 for ‘‘Erik’’,
Fig. 1, and frame 74 for ‘‘Football’’, Fig. 1, using a manual
segmentation. The goal is to find the corresponding region ΩT in
frame 6 for ‘‘Erik’’ and frame 75 for ‘‘Football’’. We
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initialize with a circle far from the solution to show the stability of
the method.

First, we present results on sequence ‘‘Erik’’ composed of
288x352-pixel frames (see Fig. 1). This sequence shows a translat-
ing man over a static background. This sequence was chosen be-
cause its motion is very simple, while it is composed of many colors
which will lead to complex color histograms. Some parts of the
background have similar colors than Erik. Therefore kNN-KL in-
cludes it as object while kNN-KL-G detects their spatial features are
not correct so it does not include it as object. These results did not
use maximum area constraint, λ = 0. Results are presented on se-
quence ‘‘Football’’ composed of 288x352-pixel frames (see
Fig. 1). This sequence shows fast and articulate motions. Some parts
of the public on the upper part of the video have the same colors as
the player. kNN-KL-G excludes again them as their spatial features
are not correct while kNN-KL includes them in the segmentation.
The maximum area constraint was tuned to segment the whole ob-
ject λ = 0.004 in both cases. The Kullback-Leibler distance kNN-
KL-G slightly increase when taking the legs of the player as their are
articulated (error of registration in the spatial features). However, as
the geometric constraint is soft, it increases less than with segment-
ing the public, the player is then correctly segmented with the help
of maximum area constraint.

6. CONCLUSION AND FUTURE WORKS

The presented results show that the kNN framework can be applied
to active contour segmentation, especially in a high-dimensional con-
text such as joint feature-spatial segmentation using a PDF-based
criterion. Future works will consider a motion model more complex
than translation, possibly dealing with articulated motions. We will
also apply this high-dimensional framework for segmentation using
multiple features [9] (motion, texture. . . ).
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