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ABSTRACT

We propose an approach to model the background of images
in a video sequence based on subpixel edge map. This work is
motivated by the observation that intensity based background
models are sensitive to changes in illumination and camera
parameters, e.g., gain control. In addition, the false positive
rate is higher due to accidental alignment of figure intensi-
ties with the background model. Background models of edge
maps, however, are more localized and thus reduce the like-
lihood of accidental alignment. We argue that the discretiza-
tion error in pixel-level background models is also responsi-
ble for some of the false positives and develop a method based
on subpixel edges whose background is thus highly selective.
This method models the edge position and orientation using a
Mixture of Gaussians model. This approach has been tested
on a wide range of videos and the resulting background mod-
els are a much more selective figure-ground segregation.

Index Terms— Subpixel Edges, Mixture of Gaussians,
Segmentation, Tracking, Figure-ground Segregation

1. INTRODUCTION

Methods for the analysis of moving objects in video sequences
obtained from stationary cameras, e.g., for surveillance and
monitoring, typically model the stationary background and
detect moving objects as those pixels which do not fit this
model. Averaging frames over time is a simple method of
constructing a background model which is effective if ob-
jects move continuously over the scene and lighting does not
change rapidly. Background modeling using multiple dis-
tributions is used to handle images with slowly moving ob-
jects, slight lighting variations, and repetitive object move-
ments [1, 2, 3, 4, 5]. The most popular schemes use the Mix-
ture of Gaussian (MoG) model for each pixel. The intensity
at each pixel is modeled using a fixed number of Gaussians
which are updated on every observation. Any pixel which is
unlikely to come from the MoG is classified as foreground.
Methods for modeling background intensity typically suf-

fer from two limitations. First, they are susceptible to sudden
changes in illumination, either global changes, e.g., due to the
sun coming out of clouds, or local changes, e.g., due to par-
tial reflection from a brightly colored objects passing nearby,

Figure 1. Handling different illuminations requires either a
broader distribution model or adding a new distribution to the
mixture, both of which reduce sensitivity to figure segmen-
tation. Second, these models are susceptible to changes in
the camera model. For example, automatic gain control can
change the overall intensity distribution as a bright object en-
ters the field of view as illustrated in Figure 2. Another draw-
back of the intensity-based methods is that numerous obser-
vation frames are required, especially (i) when the illumina-
tion is changing and (ii) the scene is constantly occupied with
moving objects or when objects are moving slowly.
An alternative to modeling background intensities is to

model the background intensity gradient. Jabri et al. [6] aug-
ments the traditional intensity background model with mod-
els of the intensity gradient as captured by the Sobel edge
responses. Large changes in either intensity or in edges are
fused. However, the involvement of the intensity model re-
tains the sensitivity to sudden changes in illumination. Javed
et al. [7] in contrast, require significant changes in both the
intensity and intensity gradient. The use of a gradient model
removes many false alarms due to small illumination changes.
However, intensity gradients arising from large illumination
changes can still signal a figure when none exists, Figure 1(b).
A key limitation of intensity and intensity gradient back-

ground models is that background models do not take spatial
interactions into account. Alternatively, edge maps tag those
background pixels which maximize local gradient in a neigh-
borhood of pixels. This tagging increases selectivity which
in turn reduces both the number of pixels which would have
been discarded from the background model and the pixels
would have been erroneously labeled as foreground. Yang
and Levine [8] modeled background edge-maps using robust
statistics where edges diagnosed as outliers correspond to the
foreground edges. Zhang et.al [9] identify an edge as a figure
if its intensity is sufficiently different from an intensity back-
ground model. As a result, the output becomes insensitive to
changes in focus and illumination. Kim and Hwang [10] de-
tect the edges of current frame as well as of the difference im-
age of consecutive frames. They compare the edge-locations
of both maps with a background edge-map and detect fore-
ground edges if the distance is within threshold.
Discretization errors in pixel-based edge maps lead to un-

necessary broad background models: a background edge halfway
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(a) (b) (c) (d)

Fig. 1. The effect of sudden illumination change on different background modeling schemes is illustrated. Top Row: a pair
of typical background images, and their (b) gradient maps, (c) edges and (d) subpixel edges. Middle row: (a) a frame when
the illumination has changed and its (b) intensity gradient, (c) edge map and (d) subpixel edgemap. Bottom row: Foreground
detection using (a) intensity, (b) intensity gradient, (c) edge map and (d) subpixel edgemap.

(a) (b) (c) (d)

Fig. 2. The effect of change in the gain of the camera is depicted for different background modeling schemes. Top Row:
a background input image, and its (b) gradient map, (c) edgemap and (d) subpixel edgemap. Middle row: (a) a new input
image with a change in the gain of camera, and (b) intensity gradient, (c) edge map and (d) subpixel edgemap. Bottom row:
Foreground detection results based on (a) intensity, (b) intensity gradient, (c) edge map and (d) subpixel edgemap. Observe that
the extent of the spurious responses reduces from left to right.
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Fig. 3. Covariance
� � � �

(green ellipse) for an edge distribu-
tion and four red dots shown represents the sites for the edge
under consideration. Any edge which lies in the distribution
is considered to be background.
between the pixels will require both pixels modeled as back-
ground, thus unnecessarily “blurring” the background model,
which in turn reduces sensitivity to detecting figures. Instead,
we propose a background model based on subpixel edge-maps
of the images. In our approach, we model position � 	 �  � and
orientation � of subpixel edges which disambiguates between
edges of the same orientation but at different positions and
vice versa. Subpixel edge-maps attains high precision and ac-
curacy in addition to being invariant to illumination changes
and accommodates small translations easily. Another advan-
tage is that the algorithm requires fewer frames to build the
background model even in case of slow moving objects and
busy scene. The advantage of modeling sub-pixel edges be-
comes evident in scenes with cluttered backgrounds where
edges from a figure can share the same pixel as well as the
same orientation as shown in Figure 4.

2. APPROACH

Subpixel edge-maps are obtained on a video sequence us-
ing a modified Canny edge detector as represented by a set� 	 �  � � � for each edge, where 	 �  � � and � � � � � �  � .
Since the edges are subpixel, we associate each edge to its
corresponding sites (neighboring pixels) as illustrated by red
dots in Figure 3. Note “sites” only facilitates indexing of dis-
tribution for the edges and it still allows for subpixel accuracy
for modeling the distribution of edges across frames. Each of
the sites has a mixture of 3D Gaussian distributions in which
each Gaussian component represents the history of observa-
tions for an edge w.r.t its orientation and location.
Let " � � � � #

be a random variable representing observations
for each edge across frames. The Gaussian distribution of
random variable " is

$ � " � ' () + - . / 0 1 2 3 5 6 5 7 1 90 ; = 90 ) ? = @ ) � � � � # . . C 2 E 93 5 6 5 7 ) ? = @ ) � � � � # . .
(1)

At each site, we store mixture of such Gaussian distributions
along with their weights G which essentially represent the fre-
quency of the same edge in the observation history. The prob-
ability of the current edge ; � 	 �  � � � being observed in the past
is given by

(a) (b)

(c) (d)

(e) (f)

Fig. 4. This figure compares the accuracy of background
modeling using pixel and subpixel edge maps. (a) One of
the background images, (b) Foreground image, (c) Pixel-edge
foreground detection, (d) Subpixel-edge foreground detec-
tion, (e) zoomed image of (c), (f) zoomed image of (d). Note
how the roof of the car disappears in the case of pixel-edge
modeling as the railing behind the car has the same orienta-
tion as of the roof edges.
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where ] are the sites for ; , ^ is the number of components in
the mixture, G P U and $ P U are the weight and Gaussian distri-
bution respectively, for _ a b component of the mixture at sitec . The ^ components of the mixture are ordered by the ra-
tio d U e f � f . The first ^ h components having sum of weights
greater than a threshold i are defined as background compo-
nents. We use i ' � l m to � l o .
Foreground Edge Detection: The foreground edges are de-
tected if an observed edge ; p � 	 p �  p � � p � does not lie within
2.5 standard deviation away from the mean of any of the back-
ground components of the distribution at all its sites, i.e.,

� " p r Z U � 	 �  � � � � � = (U � " p r Z U � 	 �  � � � � u w � l { + } _ � ^ h
(3)

Updating the Background Model: The Gaussian compo-
nents _ at corresponding sites c which match the observation
value " p � ( are updated by the following equations [2],G p � (P U ' G pP U � �� � � � $ P U � " p � ( � r G pP U �

Z p � (P U ' Z pP U � $ P U � " p � ( �� p � (� V ( $ P U � " � � � " p � ( r Z pP U �
� p � (P U ' � pP U � $ P U � " p � ( �� p � (� V ( $ � " � � � " p � ( r Z pP U � u � " p � ( r Z pP U �
Most edges except noise edges are samples of a curve in

the image, Figure 3. Since an edge can slide along the curve,
one would expect a large variance in the tangential direction
and small variation along normal as shown in Figure 3. Em-
pirically we also get larger variation along the curve.
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(a) (b) (c) (d) (e) (f)

Fig. 5. A comparison on standard video sequence “Susie”, “Akiyo” and the “occluded pedestrian” video sequence.(a) a typical
frame used for the background model, (b) a new frame for which a figure needs to be segregated, (c) foreground detected using
intensity, (d) a typical subpixel edgemap for background modeling, (e) a new subpixel edgemap needed to be segregated, (f)
foreground subpixel edgemap. It is clear in all cases the subpixel edge is more selective.

Fig. 6. ROC curve ob-
tained for foreground
detection using Intensity
(Black), Gradient (Pink),
Pixel Edges (Yellow) and
Subpixel Edges (Red) for
sequence Figure 1

Fig. 7. Plot of detection
rate vs number of frames
to build the model on se-
quence in Figure 4 for in-
tensity and subpixel edges
based method.

3. EXPERIMENTS & RESULTS

We compared four background models:(i) intensity, (ii) gra-
dient, (iii) pixel edges, and (iv) subpixel edges. First, one can
qualitatively observe the differences among foreground de-
tected by these models in Figures 1 and 2. We also show
results on two widely used video sequences (i) Susie and (ii)
Akiyo in Figure 5. Observe in the first and second sequence
that the foreground occupies most of the scene and its very
slowly moving, so it becomes really difficult to model the
background for the video sequence. Our method is able to
detect foreground as compared to the intensity based meth-
ods. The last sequence shows how robust our method is in
images with trees and bushes. Second, we quantify these dif-
ferences in the form of ROC curve, Figure 6, computed on
the sequence shown in Figure 1. Ground truth was marked
for each of the four methods manually for 5 frames and false
positives and true positives were recorded by varying the de-
tection threshold � . Also the plot in Figure 7 shows subpixel
edge-based methods require less frames to build the model.
Clearly, a background model based on subpixel edgemaps
outperforms the others.

4. CONCLUSION

We have proposed a novel idea to model subpixel edges which
provides superior foreground detection, especially in case of
sudden illumination change. It provides detection of figure
with high precision and good accuracy.
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