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ABSTRACT

Vehicle tracking in video sequences is typically carried

out by matching 2-d views (images or features) of the vehicle

from one frame to the next. These views are adapted by grad-

ual changes in 2-d image transforms between frames. This

approach can work well for sequences where the vehicle pro-

jection is not highly perspective and 3-d vehicle orientation

with respect to the camera varies slowly. In this paper, vehi-

cle tracking is studied under conditions that violate these as-

sumptions. Tracking is carried out on high-definition videos

sequences of vehicles that pass near the camera, causing se-

vere perspective distortion. Perspective effects are accounted

for by tracking edge curves on the vehicle and reconstructing

them in 3-d, using structure from motion on adjacent frames.

The result is segmentation of the vehicle from the background

and recovery of its geometry and motion in 3-d.

Index Terms— Machine vision, Tracking, Geometry

1. INTRODUCTION

Tracking objects in video is a well-studied problem in the

computer vision literature. It has applications ranging from

military surveillance to robot navigation to movie special ef-

fects. The approaches to solving the problem are as diverse

as the applications and can be classified as either model or

segmentation based and as either 2-d or 3-d. A model based

tracker aligns a model of the object to each frame of video and

is typically initialized manually. In contrast, a segmentation

based tracker automatically detects the features to track. Both

types of tracking estimate a transformation of the object from

frame to frame in either 2-d or 3-d. A 2-d tracker estimates

rigid or elastic transformations in the image plane, while a 3-d

tracker estimates the motion in 3-d space relative to a camera.

This paper proposes a 3-d segmentation based tracker us-

ing curves as features. The target application is tracking un-

known vehicles for surveillance. Table 1 classifies several

other related trackers in the literature. For brevity, only small

This material is based upon work supported by the Defense Advanced

Research Projects Agency (DARPA) under Contract No. NBCH1030006.

selection of the most relevant work is listed. Each of these

papers address monocular vehicle tracking.

Model Based Segmentation Based

2-D [1], [2] [3], [4]

3-D [5], [6] [7]

Table 1: Classification of related tracking algorithms.

Like the proposed method, the work of Jain et al. [3]

tracks a dense set curves detected on a vehicle. However,

it relies on elastic deformations in 2-d to account for curve

distortion easily explained by 3-d rigid motion. The work of

Kanhere et al. [7] tracks a sparse set of points on vehicles in

3-d. In contrast, the proposed method aims to segment and

track a much denser description of the vehicle. Dense 3-d de-

scriptions are more beneficial to later vision tasks such as the

vehicle recognition method proposed by Han et al. [8].

The algorithm described in this paper tracks a dense set

of curves in 3-d for vehicle surveillance. In this application it

is often reasonable (i.e. on a straight road) to assume motion

is purely translational in 3-d. This assumption leads to addi-

tional constraints derived in Section 2. These constraints are

enforced on curves in Section 3 using a special parametriza-

tion. In Section 4, the curves are tracked using 3-d constraints.

Finally, Section 5 shows 3-d tracking results.

2. EPIPOLAR POINT MOTION

The assumptions of a fixed camera and a translating vehicle

substantially constrain the projected motion of fixed points

on a vehicle. Under such assumptions the image points are

constrained to translate along epipolar lines in a predictable

way, simplifying the correspondence problem.

To develop these constraints, first consider the duality of

camera and vehicle motion. On the left of Figure 1 a vehi-

cle translates relative to a fixed camera (viewed from above).

The blue dots show the motion of a fixed point on the ob-

ject projected into the image plane. Equivalently, the right

of Figure 1 shows a dual representation with a fixed vehicle

and translating camera. These interpretations produce iden-

VI - 3251-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007



Vehicle
M

otion

C
am

era
M

otion

Figure 1: Duality of camera and vehicle motion

tical images of the vehicle. In the restricted case where the

only motion is translation, the cameras centers lie on a line in

3-d space. Furthermore this line intersects each image at ex-

actly the same point. As a result, for all pairs of images in the

sequence, the epipole is the same. This common epipole may

be viewed alternatively as the vanishing point of the vehicle’s

path in the image plane.

Consider a 3-d point of interest Xt = [x y z 1]� and

its projection into the image xt = [u v 1]� at time t where

λtxt = PXt. The camera matrix P is assumed known and

fixed over time, and the projective depth λt varies with the

distance of the point to the camera. Assume that at time t0 the

vehicle is moving at a constant velocity v in the direction D =
[dx dy dz 0]� where D is a unit vector. Then the 3-d position

of the point at time t is Xt = Xt0 + v(t− t0)D. Notice that

D is the point on the plane at infinity corresponding to the

direction of the vehicles motion. Hence D projects to the

common epipole λee = λe[ex ey 1]� = PD. Using this

fact, the projection of the moving point is λtxt = PXt =
P(Xt0 + v(t− t0)D) = λt0xt0 + v(t− t0)λee where λt =
λt0 + v(t− t0)λe. Denote τ = t− t0. Solving for xt gives

xt =
vτλee + λt0xt0

vτλe + λt0

=
vτλe

λt0
e + xt0

vτλe

λt0
+ 1

=
γτe + xt0

γτ + 1
(1)

where γ = vλe

λt0
. Notice that γ is a function of the depth and

velocity of the point. Estimation of γ is possible given the

epipole and two corresponding image points, but depth and

velocity are coupled and both cannot be recovered. However,

velocity is the same for all points on the vehicle so it can be

factored out. Recovering γ at each point is ultimately equiva-

lent to estimating depth up to a common unknown scale fac-

tor.

Assuming vehicles are translating along the direction of

road; the common epipole can be estimated in advance by

finding the intersection of the edges of the road and/or lines

generated by tracking points on vehicles in training video.

The projections of all points on the vehicle are constrained to

move along the epipolar lines. Figure 2 shows an example of

points moving along epipolar lines. All corresponding points

in the image plane lie on a line incident with the epipole e.

t1 t2 t3

e

Figure 2: Motion along common epipolar lines

Finding corresponding points in subsequent video frames is

reduced to a one dimensional search. Correspondences of the

same point in more than two frames are further constrained

by a common γ as long as velocity is constant.

3. EPIPOLAR CURVE PARAMETRIZATION

The above epipolar constraints apply equally well to all points

along a curve. This section defines a curve parametrization

that takes advantage of these constraints for efficient match-

ing. The curves are formed from edges detected and linked

using the procedure in [9]. The algorithm uses a variation of

Canny edge detection (with parabolic interpolation for sub-

pixel localization) and a topologically motivated linker. The

resulting curves are initially parametrized by an ordered set of

points in image coordinates (u, v). These points are converted

to a polar coordinate system with origin at the epipole so that

s =
√

(u− ex)2 + (v − ey)2 is the distance to the epipole

and α = arctan(v − ey, u − ex) is the angle. In this coordi-

nate system only s changes with time while α remains fixed

and defines an epipolar line. Converting the motion equation

(1) into epipolar coordinates, (st, α) =
(

st0
γ(t−t0)+1 , α

)
.

α

s

e

Figure 3: Epipolar curve fragment parametrization

In addition to the change in coordinate system, each curve

is broken into the smallest set of curve fragments such that

each fragment can be parametrized by an injective function

s(α) that maps each angle in some interval [αmin, αmax] to

a distance from the epipole. These fragments are formed by

stepping along the sample points of a curve, computing the

change in angle Δα = αi − αi−1, and splitting the curve

whenever Δα changes sign. The curve shown in Figure 3 is

split into three curve fragments, each monotonic in α. Geo-

metrically, the curves are split whenever they become tangent

to an epipolar line.
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Intensity statistics are also gathered in the neighborhood

of each curve to supply additional information in the curve

matching process. Along each curve fragment let I−(α) be

the mean intensity along epipolar line α in the −s direction.

Similarly let I+(α) be the mean intensity in the +s direc-

tion. Samples are taken in a region between a curve and its

neighboring curves rather than over a fixed distance. As a re-

sult, the same patch of surface is sampled in each frame as

the patch is scaled by perspective distortion. This adaptive

approach avoids undersampling in large regions and avoids

oversampling into small adjacent regions. Some curves may

appear intermittently due to noise and alter the sampling re-

gions. However, such unstable curves arise from low contrast

edges that separate regions of similar intensity. In practice,

averaging over these similar regions does not alter the inten-

sity statistics significantly.

I−(α) I+(α)

Figure 4: Intensity sampling in regions around curves

Intensity statistics are computed as follows. For each sam-

ple point on a curve fragment I+(α) = 1
n

∑n
i=1 I(s(α) +

i, α) where n is the largest integer such that s(α)+n < s+(α)
for some other curve s+(α) such that s(α) < s+(α). Simi-

larly I−(α) = 1
k

∑k
i=1 I(s(α) − i, α) where k is the largest

integer such that s(α) − k > s−(α) for some other curve

s−(α) such that s(α) > s−(α). In both definitions, I(s, α),
is the image intensity bilinearly interpolated at the point (s, α)
in epipolar coordinates. Figure 4 shows the scan lines for in-

tensity sampling for an example curve fragment. In this case,

I−(α) is sampled on the left of the curve (shown in orange)

while I+(α) is sampled on the right (shown in purple).

4. EPIPOLAR CURVE MATCHING

Once the curve fragments are created they must be tracked.

Tracking occurs by identifying potential matching fragments

in adjacent frames. The set of potential matches is limited

by a local search. A potential corresponding curve fragment

must have an α range that overlaps the target curve. In ad-

dition, a threshold is set on distance curve points may move

in the s direction from frame to frame (essentially a threshold

on the maximum vehicle velocity).

Let m be a potential match in the set Mt of all potential

matches between a given curve fragment at time t0 and the

fragments at time t. Let T be the set of all times jointly con-

sidered for matching. In practice, T = {t0±1} since velocity

is approximately constant over any triplet of adjacent frames.

Each m is assigned a shape matching cost function, CS
m, de-

pendent on γ and two intensity matching costs, CI+

m and CI−
m ,

independent of γ:

CS
m(γ) =

∫ αmax

αmin

(
st(α)− st0(α)

γ(t− t0) + 1

)2

dα (2)

CI+

m =
∫ αmax

αmin

(
I+
t (α)− I+

t0(α)
)2

dα (3)

CI−
m =

∫ αmax

αmin

(
I−t (α)− I−t0(α)

)2
dα (4)

The total normalized cost function is

Cm(γ) =
1

αmax − αmin

⎛
⎝CS

m(γ)
σ2

s

+

(
CI+

m + CI−
m

)
σ2

I

⎞
⎠

(5)

where [αmin, αmax] is the range of α that overlaps between

the curve fragments and σs and σI are the standard devia-

tions of shape and intensity respectively. These σ parameters

are tuned by hand to balance the contributions from the shape

and intensity terms. Using a constant γ over the α range es-

sentially approximates the 3-d curve with a planar curve par-

allel to the image plane. This approximation leads to a simple

analytic expression for the γ that minimizes the cost function:

γ̂ =
1

t− t0

( ∫
st0(α)2dα∫

st0(α)st(α)dα
− 1

)
(6)

This expression is derived by solving d
dγ Cm(γ) = 0. The

discrete set Γ of possible γ values for a curve fragment is

defined to be the set of γ̂ for all m ∈ Mt and all t ∈ T . A

curve fragment may match multiple fragments in each frame

so the conditional probability (at time t) of the data Dt given

γ is defined as the mixture:

P (Dt | γ) =
1
Z

∑
m∈Mt

(αmax − αmin) exp (−Cm(γ)) (7)

In (7) Z is a normalization constant and the mixing coeffi-

cients, αmax − αmin, assign weight based on the extent of α
overlap. Assuming conditional independence of the data at

different times given γ, the joint probability over the collec-

tion of times T is:

P (DT | γ) =
∏
t∈T

P (Dt | γ) (8)

With a uniform prior distribution on γ, the posterior distri-

bution P (γ | DT ) is proportional to P (DT | γ). Compute

P (γ | DT ) for each γ ∈ Γ and select the one that maxi-

mizes the posterior distribution. This process is repeated for

all curves in all frames, each curve fragment finding the γ
that maximizes its likelihood given the curves in the adjacent

frames. The resulting γt0 (γ computed at time t0) are not di-

rectly comparable to γt computed at other times. Instead they

are related by γt = γt0
1−γt0 (t−t0)

.
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5. EXPERIMENTAL RESULTS

Once all curve fragments have been tracked, segmenting mov-

ing vehicle curves from stationary background curves is triv-

ial. Stationary curves will – if correctly tracked – have esti-

mated γ values near zero, while moving curves will have pos-

itive γ. A simple threshold on γ segments the moving curves

from stationary ones. Figure 5 (b) shows an example using a

threshold of γ > 0.01 on the curves from the image in Fig-

ure 5 (a). The segmented moving curves are shown in bold.

Figure 6 (Moving) shows the ROC curve as the γ threshold is

varied. The ground truth vehicle curves are all those that lie

within a manually labeled vehicle region in each frame.

t = 0

t = 6

t = 12

(a) Image

(b) Moving Curves

(c) Boxed Curves

Figure 5: Tracking results (left) and segmented curves (right)

The segmented curves contain several outliers from in-

correct matches. Short fragments are mismatched most fre-

quently due to a lack of distinguishing geometry. Removing

fragments less then 5 pixels in length greatly reduces outliers.

The ROC curve in Figure 6 (Long Moving) shows a decrease

in false positive rates with similar true positive rates.

To eliminate the remaining outliers an axis-aligned 3-d

bounding box is robustly fitted around the region most dense

with curves. Mismatched curves tend to scatter almost uni-

formly in space while true vehicle curves cluster densely in

the 3-d vehicle location. The bounding box is computed by

taking histograms in each principal direction and removing

the tails of each distribution. This step assumes only one ve-

hicle is present at a time. Remaining tracked curves are shown

in Figure 5 (c). The left of Figure 5 shows these final results,

including bounding boxes, in three frames of video. Bound-

ing box construction is mostly invariant to the γ threshold.

Figure 6 (Boxed Long Moving) indicates this fixed perfor-

mance point for any threshold that retains the vehicle curves.
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Figure 6: ROC curves for segmentation (γ threshold varied)

While the false positive rate drops again, the true positive rate

is only 76%. Some of the remaining 24% false negative rate

is due to vehicle curves generated by reflections and shadows

that do not move rigidly with the vehicle.

In summary, the tracking approach in this paper segments

a dense 3-d description and performs well under severe per-

spective distortion that is challenging for most 2-d trackers.
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