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ABSTRACT

There are ever increasing number of applications of multi-

target tracking and considerable research has been conducted

to solve this problem. Multi-target tracking is a NP -hard

problem and almost all of the present multi-target tracking al-

gorithms are sub-optimal by finding the solution in a reduced

hypothesis space. In this paper we introduce a new approach

toward finding the optimal single frame solution for general

multi-target tracking problem. Our proposed method finds

the optimal solution using linear programming optimization

method. The proposed method has been successfully applied

to synthetic and real data.

Index Terms— Tracking, Optimization, Association, JPDA.

1. INTRODUCTION

Multi-target tracking has several different applications and its

applications has been growing by recent advances in digi-

tal imaging techniques which have made possible the auto-

mated acquisition of millions of digital images so that there

are considerable demand for faster and more accurate digital

image processing techniques and pattern recognition methods

to analyze such huge sets of images and to address new ques-

tions. As a result designing precise fully automated track-

ing systems are mandatory. The field of multi-target tracking

has attracted researchers with a variety of different interests

which include designing faster tracking methods, innovating

new mathematical tracking models and improving the pre-

vious models to overcome their shortcomings. Multi-target

tracking has a broad range of applications including air traffic

control, robot control, ocean surveillance, automated vehicle

control, biological and cellular research [1, 2, 3, 4, 5].

The goal of multi-target tracking is associating measure-

ments with the appropriate targets. This is the most chal-

lenging task in the multi-target tracking applications due to

missing targets, new targets and false alarms. Multi-target

tracking is one of the NP -hard problems and so consider-

able efforts have been conducted to design tractable methods

by reducing the complexity. These methods include Near-
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est Neighbor, Joint Probabilistic Data Association and Multi-

Hypotheses Data Association [6, 7, 8, 9].

The common task among all tracking methods is to re-

duce the hypothesis space and to find the suboptimal solution

by finding the most likely hypothesis in the reduced hypothe-

sis space. Solving the problem in a reduced hypothesis space

raise some important questions such as the likelihood of the

solution to be optimal regarding the reduced hypothesis space,

the likelihood of finding the optimal solution in the reduced

hypothesis space and the closeness of the solution to the opti-

mal solution regarding the reduced hypothesis space.

To find an optimal solution for multi-target tracking prob-

lem, all enumerations must be evaluated. Increasing the com-

putational power of the computers and advancements in the

optimization methods, raise the question and demand for de-

signing new methods to find the optimal solutions for NP -

hard problems such as assignment problem or more specif-

ically related to our research multi-target tracking. To do

so, all possible hypotheses must be enumerated and problem

must be solved on exact hypothesis space.

The focus of the proposed method in this paper is to find

an optimal solution for general multi-target tracking problem.

2. PROPOSED METHOD

The association problem

X̂1:K = arg max
X1:K

P (X1:K | Z1:K) (1)

is a NP -hard problem, so to find the optimal solution is es-

sentially impossible. Several different methods have been

introduced to solve the problem by finding the most likely

hypothesis. As a result the solution which has been found

in the reduced hypothesis space is suboptimal. Virtually all

association-based tracking methods made the problem tractable

by searching over reduced hypothesis space

{Xh
1:K | h = 1, 2, ...} (2)

such that we find the best member of this set

X̂1:K = X ĥ
1:K where ĥ = arg max

h
P (Xh

1:K |Z1:K) (3)

as the solution. The problem may be solved over reduced

multi-frame hypothesis space over time [k − n, k] such as
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Meas.

A B C

1 0 1 0

Targets 2 1 0 0

3 0 0 1

Fig. 1. Assignment Matrix: Three measurements A, B,C
need to be assigned to three targets 1, 2, 3. Clearly each row

and column of the matrix must sum to one.

the Multi Hypothesis Tracking (MHT) algorithm [6], or over

reduced single-frame hypothesis space over time [k − 1, k]

such as Joint Probabilistic Data Association (JPDA) [10]. The

original, optimal solution is found if it is included among the

hypotheses, i.e., if

arg max
X1:K

P (X1:K | Z1:K) ∈ {Xh
1:K} (4)

A feasible approach which has been widely used is the

single-frame association method. However all single-frame

approaches solve the problem over a reduced hypothesis space

over time [k − 1, k]:

{xh
k | h = 1, 2, ...} (5)

and search for the best hypothesis

x̂k = xĥ
k where ĥ = arg

{
max

h
P (xh

k |Z1:k)
}

(6)

as the solution. As a result if the optimal single-frame solu-

tion is included among the hypotheses of that frame, it will be

found, i.e., if

arg

{
max

xk

P (xk| Zk)
}

∈ {xh
k} (7)

JPDA [10] is one of the widely used single-frame algorithms

to solve the multi-target tracking problem in a reduced hy-

pothesis space.

2.1. Joint Probabilistic Data Association

Joint Probabilistic Data Association (JPDA) is a single-frame

sub-optimal solution that has been widely used to solve multi-

target tracking problem (1) over time [k − 1, k]. To make the

association problem tractable, JPDA employs a gating strat-

egy to reduce the number of possible association hypotheses

and to keep a subset of them. The reduced set of hypothesis

contains valid association hypotheses based on the gating fac-

tor which determines the extent of the gating volume and is

applied by JPDA to validate the measurements. Valid associa-

tions, a subset of association hypotheses, are generated based

on validated measurements. Valid measurements fall inside

the validation gate of each target while the measurements that

fall outside of the target’s validation gate are not considered

as association candidates and are thrown away. From Bayes’

rule

P (xk| Z1:k) = λk · P (xk| Z1:k−1) · P (Zk| xk) (8)

where λk is a normalization constant.

The first term of (8), P (xk| Z1:k−1), is a prediction step

while the second term of (8) is the likelihood of measurement

Zk given hypothesis xk. We illustrate (8) as follows.

P = P (xk| Z1:k) = λk ·
⎡
⎣ ∏

j∈Mk

PD

⎤
⎦ ·

⎡
⎣ ∏

j∈MD

PMD

⎤
⎦ ·

⎡
⎣∏

j∈F

PF

⎤
⎦ ·

⎡
⎣ ∏

j∈Mk

N(vk,j , 0, Sk,j)

⎤
⎦ (9)

where PD is the probability of detection which is a constant

determined based on the detection performance, PMD is the

probability of miss detection, PF is the probability of false

alarms, and vk,j = zτ
k,i − ẑk,j is an innovation term measured

based on motion dynamics to associate the jth measurement

at time k to the ith target at time k−1. Having the association

problem specified by (9), the optimization problem is to find

the best estimate among all possible hypotheses evaluated.

2.2. Optimal Probabilistic Data Association Method

Our goal in this paper is to find the optimal solution over

time [k − 1, k] to solve (1). In our proposed Optimal Proba-

bilistic Data Association (OPDA) method, we use Hungarian

method, a linear programming optimization method, to opti-

mize the solution.

The basis of the Hungarian method was introduced by

Egervary and Konig and it has been completed later by Kuhn

[11]. The Hungarian method is a class of linear programming

methods for the assignment problem known as primal-dual

algorithms [12]. Primal-dual algorithms are characterized by

• A primal vector and a dual feasible solution is main-

tained by the algorithm.

• One of the following tasks is performed by the algo-

rithm in each iteration

1. The primal vector is kept fixed and the dual feasi-

ble solution is changed.

2. Dual solution is kept fixed and the primal vector is

changed toward primal feasibility while satisfying

the present dual solution.

• By iterating the algorithm, the primal vector progresses

toward primal feasibility.

Assume the assignment problem is presented by matrix

X = (Xji) of order Mk and C = (cij) is the associated cost
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Fig. 2. Tracking Performance: OPDA (blue line) vs. Nearest

Neighbour (red line) as a function of the probability of de-

tection (PD). For each value of probability of detection, 200

video clips each of 50 frames have been used.

matrix with the same order where Mk is the number of mea-

surements in time k. To solve the assignment problem we

wish to minimize

A(C,X) =
Mk∑
i=1

Mk∑
j=1

cijXij (10)

subject to

Mk∑
j=1

Xij = 1 ∀i ∈ [1,Mk],

Mk∑
i=1

Xij = 1 ∀j ∈ [1,Mk]

Xij = 0 or 1 ∀i, j ∈ [1,Mk] (11)

Each feasible solution of (11) is an assignment problem of

order Mk, i.e., each assignment is a permutation matrix. To

maximize

B(δ, g) =
Mk∑
i=1

δi +
Mk∑
j=1

gj (12)

subject to

δi + gj ≤ cij , i, j ∈ [1,Mk] (13)

δ = (δ1, δ2, · · · , δMk
) and g = (g1, g2, . . . , gMk

) must be

found as the dual of (11). The constraint which is called dual

feasibility condition for (δ, g) can be rewritten as

c̄ij = cij − δi − gj ≥ 0, i, j ∈ [1,Mk] (14)

where C̄ = (c̄ij) is reduced cost matrix and its elements c̄ij

are reduced cost coefficients. B(δ, g) is dual assignment func-

tion and
∑Mk

i=1 δi +
∑Mk

j=1 gj is the total reduction. As a result

the vectors (δ, g) are dual feasible if and only if the reduced

cost matrix C̄ ≥ 0 [12]. An assignment problem X and a dual

feasible solution (δ, g) are optimal if complementary slack-

ness optimality conditions for the assignment problem and its

dual

Xij × (cij − δi − gj) = Xij × c̄ij = 0, i, j ∈ [1,Mk] (15)
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Fig. 3. Tracking performance of OPDA(circles) vs. NN(stars)

is shown by average probability that a cell has been tracked

computed over each video clip (50 frames). Moreover, the

average performance is computed over all 200 video clips

(each contains 50 frames) and is superimposed in blue line

for OPDA and in red line for NN; (a) (PD = 100%), (b) (PD

= 95%).

is satisfied. Having these basic assumptions, Hungarian method

begins with a dual feasible solution

c̄ij = cij − δi − gj = 0 (16)

and tries to find admissible elements, i.e., an association among

the cost matrix elements (C) which satisfy (16). The track-

ing problem can be represented in the form of an assignment

problem so that a primal-dual algorithm can be applied to

solve it. To represent the tracking problem in the form of

an assignment matrix, the measurements Zk of frame k are

assigned to the targets xk−1 of frame k − 1, giving rise to an

assignment matrix (see Fig. 1) which represents the associa-

tion of measurement j to target i.
To solve the assignment problem in the proposed method,

we embed the probabilistic data association function as the

cost function C in the Hungarian method. C is the cost func-

tion so that each element of which (cij) represents the cost

of assigning measurement j in time k to target i from time

k − 1. The goal is minimizing the cost of joint association

of measurements to targets. The cost matrix is computed as

follows.

C = [cij ] =
1
P

=
1

Pij
(17)

where each element Pij is obtained by

Pij = PDij × PMDij
× PFij

× Nij (18)

Finally having C as the cost function, the proposed OPDA

finds the optimal assignment by satisfying (15).

As we can observe by minimizing the cost function C, at

the same time we are maximizing the probabilistic data asso-

ciation (P ) in (9). The optimal association among all possible

hypotheses is found by employing Hungarian method to solve

(9) and the optimal solution over frame [k − 1, k] is obtained.
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Fig. 4. Performance of the proposed OPDA (circles) in com-

parison with standard JPDA (stars) as a function of gating

factor (Gf ). The average performance computed over all 20

video clips for each gating factor is superimposed in blue line

for OPDA and in red line for standard JPDA; (a) Gf = 1, (b)

Gf = 2, (c) Gf = 3.

3. RESULTS

The proposed OPDA is successfully applied to both synthetic

video clips and blood stem cell image sequences. We gener-

ated 2000 video clips, each video clip composed of 50 frames

and 5 objects. The performance of the algorithm is assessed

based on the average percentage of frames in which a tar-

get has been correctly associated in comparison with ground

truth.

The performance of the proposed method in comparison

with Nearest Neighbour (NN) method is depicted in Fig. 2.

The two methods are compared for different values of the

probability of detection (PD). For each value of PD, the syn-

thetic cell centres are tracked over time applying the OPDA

and NN. As we can observe, the proposed method has out-

performed NN for all values of PD. A comparison of the two

algorithms for PD = 100%, and PD = 95% is depicted in de-

tail, sequence by sequence, in Figs. 3(a) and (b) respectively.

Fig. 4 shows the performance of the proposed method

in comparison with the standard JPDA for PD = 100%. To

compare the results, the performance of JPDA is measured as

a function of gate area Ga = π ×G2
r , where Gr = Gf × σsd

is the gate radius, set to be a multiple (Gf ) of the standard

deviation of the random part of the systems dynamics (sd).

The results are derived for different values of Gf ∈ [0.1, 5].
For each value of Gf , 20 video clips, each one contains 50

frames are generated. As we can observe in Figs. 4(a), (b)

and (c) for Gf equal to one, two and three respectively, the

proposed OPDA method has outperformed standard JPDA.

4. CONCLUSIONS

This paper presents an optimal single frame solution for track-

ing problem. To solve the tracking as an assignment problem,

our proposed method employs linear programming optimiza-

tion method to find the optimal solution. Measurement to tar-

get association is accomplished based on Hungarian method

in which the proposed probabilistic data association is em-

bedded as the cost function. We can observe from the results

that such an optimal tracking method produces very promis-

ing results. This is a generative algorithm and every tracking

method including nearest-neighbor, PDA, JPDA, particle fil-

tering, MHT and deformable models can be employed in this

platform by designing the correct cost function.
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