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ABSTRACT
This paper proposes an approach to searching human behav-
iors in videos using spatial-temporal words which are learnt
from unlabelled data with various human behaviors through
unsupervised learning. Both the query and the searched videos
are represented by codewords frequencies, which capture the
intrinsic information of motion and appearance of human be-
haviors. This representation further enables us to make use
of integral histograms to accelerate the searching procedure.
The performance also benefits from our feature representation
that, through a MAX-like operation, may simulate the corti-
cal equivalent of the machine-vision “window of analysis”[1].
Examples of challenging sequences with complex behaviors,
including tennis and ballet, are shown.

Index Terms— Spatial-Temporal Words, Human Behav-
ior Searching, Video Matching

1. INTRODUCTION

Searching similar human behaviors in large video database or
on internet has wide applications such as video surveillance,
sports video analysis, and content-based video retrieval. An
intuitive idea to solve this problem is to “correlate” a short
query video against the searched video sequences; the video
locations with high behavioral similarities are selected as the
matched positions. However, measuring similarity of natural
human behaviors in video clips has proven to be very chal-
lenging for computers. One difficulty is that the same action,
performed by two different people or even by the same person
but at different time, are subject to large appearance variation
due to different movement, scale, clothing, etc. Hence the
searching based on unconstrained motion estimation or opti-
cal flow is highly unreliable. Although patch-based approach
can alleviate this difficulty to some extent [2, 3], the computa-
tional cost is very high due to “correlation” in the 3D((x, y, t))
space. Another challenge is that, with moving cameras, non-
stationary background, and moving target, few vision algo-
rithms could identify and localize such motions well.
A lot of previous work has been presented to address these

problems. Motion and trajectories are commonly used fea-

tures for recognizing human actions and exhibit discrimina-
tive capability in previous work [4, 5, 6]. But estimation of
optical flow or motion may be noisy due to the fundamental
hurdles of aperture and singularities problems, etc [3]. Laptev
and Lindeberg [7]’s approach, which detects a sparse set of
space-time corner points to characterize the action, can partly
avoid these problems. But the performance may degrade due
to occlusions and misdetections of these interests points [3].
Another attempt is to measure the “behavioral similarity” by
intensity/gradient on pixel level or on space-time patch level
[3, 2, 8]. This method requires no foreground/background
segmentation as needed in [6] and no motion segmentation.
It also tolerates appearance variance in scale, orientation, and
movement to some extent. Our approach, using space-time
patches as well, shares these advantages.
This paper also uses patch-based feature that is the his-

togram of responses of a bank of 3D Gabor filters, followed
by a MAX-like operation [1]. This feature is locally invari-
ant to a range of scales and positions. Then spatial-temporal
words (i.e., “bag-of-words” model) is used to represent the
query video and each sliding window in the searched video.
And the human behavior similarity is naturally measured by
the discrepancy of codewords frequencies. “Bag-of-words”
model was initially used in the text retrieval community for
analyzing documents [9] and then it achieved significant suc-
cess in object and natural scene categorization [10, 11]. Here
the codewords dictionary is obtained by unsupervised learn-
ing from a dataset with various human behaviors.
The contributions of this work are as follows: 1) Spatial-

temporal words are proposed for video representation, which
not only captures the intrinsic information of motion and ap-
pearance of human behaviors, but also speeds up the scanning
through integral histograms. 2) The proposed patch-based
feature is locally invariant to a range of scales and positions
while maintains selectivity to some extent.

2. FEATURE REPRESENTATION

Our patch-based feature is inspired by the standard model
(HMAX) of object recognition in primate cortex proposed by
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Riesenhuber and Poggio [1]. This feature is a histogram ob-
tained by the following steps. Firstly the original video is
convolved with a bank of 3D Gabor filters. Then we pool over
limited ranges in Gabor responses through a MAX-like oper-
ation. Each Gabor orientation after pooling forms a bin of the
feature histogram. Riesenhuber and Poggio [1] argued that
the MAX-like operation may represent the cortical equivalent
of the machine-vision “window of analysis” through which to
scan and select input data. They also claimed that it is a key
mechanism for object recognition in the cortex. The feature
extraction is detailed as follows.
Firstly, the video frames are down-sampled to 320 × 240

or smaller (while maintaining the aspect ratio) to save compu-
tations. The down-sampled video is convolved with a bank of
3D Gabor filters. The Gabor filter is composed of two main
components, the sinusoidal carrier and the Gaussian envelope.
It exhibits many common properties, such as spatial localiza-
tion, orientation selectivity and spatial frequency characteri-
zation, to mammalian cortical cells. After a minor modifica-
tion of the general N -Dimension Gabor filter, we have:
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Here θ and ω are used to selectively rotate the filter at par-
ticular orientations in 3D space. Both θ and ω take discrete
values [−π

4 , 0, π
4 ], so there are 9 orientations in total. Other

filter parameters (the filter size, the effective width σ and the
wavelength λ) are determined by considering the profiles of
V1 parafoveal simple cells [12], the setup for 2D static im-
ages in [13], and the computational cost. We choose 4 scales
that is formed into 2 bands, so there are 4 × 9 filters.
Then we pool over limited ranges in Gabor responses through

a MAX-like operation. This operation takes max over grids
with size 8 × 8 × 4 and step size 4 × 4 × 2 in each scale and
then takes max over two scales of each band. After MAX-like
pooling, there are 2 bands and 9 orientations per location and
the video size is down sampled by 4 × 4 × 2, and the feature
may tolerate large variances of scales and positions.
After MAX-like pooling, the query video and each sliding

window are further divided into 4×4×3 patches with step 1×
1×1. For each patch, the responses with the same orientations
are summed up so that they form two 9-bin histograms. This
histogram pair is the final patch-based feature.

3. SEARCHING BY SPATIAL-TEMPORALWORDS

With the extracted features, the spatial-temporal words (code-
words dictionary) are learnt from a collection of unlabelled
videos by unsupervised learning. The query video and each
scanning window are represented by the frequency of spatial-
temporal words. Then the query video is “correlated” with the
searched video at all scanning positions. The integrate his-
tograms are used to speed up the correlation. Figure 1 shows
the flowchart of our approach.

3.1. Learning Spatial-Temporal Words

The spatial-temporal words are leant from a collection of un-
labelled videos. Firstly, the features (9-bin histograms) are
extracted from all patches in the original training videos ac-
cording to Section 2. These features are used to train a GMM
(Gaussian Mixture Model),

G(x) =
N∑

i=1

αipi(x) (3)

where αi’s are weights and pi’s are Gaussian components.
It is natural to use {α1p1, α2p2, · · · , αNpN} to represent the
spatial-temporal words dictionary. Intuitively, each word αipi

represents a dominant orientation response of 3DGabor filters
that is weighted by its prior probability αi in the video collec-
tion. Note that two GMMs are trained corresponding to two
bands.
The selection of the number of Gaussian components N

is a trade-off between bias and variance. This paper uses
Bayesian Information Criterion (BIC) [14] to selectN , where
the fitting of GMM model is carried out by maximization of
a log-likelihood,

BIC = −2 · loglik + (log M) · d (4)

where loglik is the log-likelihood given the samples, M is
the number of samples and d is the number of parameters. In
experiments we calculate BIC with N varying from 9 to 50
and N ≈ 20 gives the maximum BIC.

3.2. Searching

Searching is carried out by correlating the query video against
the searched video at all sliding windows. We extract features
from each patch in the sliding window (or query video) fol-
lowing Section 2. Then each feature is fed into the GMM
model that outputs the spatial temporal words {α1p1, α2p2,
· · · , αNpN}. All such outputs in the sliding window (or query
video) are added up together, which gives the frequencies of
the codewords. These frequencies are normalized to one so
that the similarity between the query video and the sliding
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Fig. 1. Framework. The flowchart of our approach.

window is naturally measured by KL divergence [15]:

KL(f ||g) =
∫

f(x) log
f(x)
g(x)

dx (5)

=
∫

f log fdx −
∫

f log gdx (6)

where f and g are normalized frequencies of query video
and sliding window respectively. To make the measure sym-
metric, we take the symmetric KL divergence: d(f, g) =
KL(f ||g) + KL(g||f). The final similarity is the negative
sum of KL divergences of two bands. We select the locations
where the similarities are greater than a predefined threshold,
but the duplicate candidates are consolidated using the neigh-
borhood suppression algorithm from [16].
Correlation at all positions is usually very time-consuming.

However, computation of the codewords for each patch can
be carried out beforehand. The computational cost can be
further reduced by representing the codewords frequencies in
the form of integral histograms [17] so that a codeword fre-
quency of each sliding window can be obtained by only 7
“add/subtract” operations.

4. EXPERIMENTAL RESULTS

Our feature representation and the searching using spatial-
temporal words has wide applications ranging from sports
video analysis, surveillance, to internet video searching. We
search a short query video, which represents the human be-
havior of interest, in longer videos and return the occurrence
of the similar behaviors. The method requires no background
/ foreground segmentation and tolerates a range of scales, po-
sitions and motion variations. Two experimental results are
shown below: one is searching tennis strokes and the other is
searching ballet turns.
Figure 2 shows the results of searching strokes in tennis

videos. The short query video is a tennis stroke of 31 frames

of 104 × 124 pixels. Figure 2 (a) shows a few frame sam-
ples. The query video is searched in a longer video playing
tennis (800 frames of 228 × 146 pixels). We build integral
histograms of codewords frequencies for the searched video
and total codewords frequencies for the query video. Then
the similarity between the query video and all sliding win-
dows are computed. Figure 2 (b) shows some searched tennis
strokes marked by rectangles. Figure 2 (c) draw the similar-
ity surfaces corresponding to frames in (b), where the yellow
indicates high similarity and blue the low similarity. In corre-
lation, the query clip and the sliding window are aligned at the
top-left corner instead of the center, so the peaks of the simi-
larity surfaces do not exactly align with the people in Figure 2
and 3.

Figure 3 shows the results of searching turn actions in a
ballet footage downloaded from the web (“BirminghamRoyal
Ballet”). It contains 400 frames of 192 × 144 pixels. The
query video is a single turn of 20 frames with resolution 96×
122. Some sample frames are shown in Figure 3 (a). Figure 3
(b) and (c) show some searched ballet turns and the corre-
sponding similarity surfaces, respectively. Column 3 and 8
are marked as occurrences while the corresponding similar-
ity surfaces have no salient peaks. This is because they are
not the first frames of the candidate video segments and the
peaks may quickly collapse after the first frame. This example
is very challenging because 1) Both the query and searched
videos contain fast moving parts; 2) the female dancer in the
searched video wears skirt, which is different to the query
video; 3) the variation in scale relative to the template is large,
while our method detects most of the turns of two dancers.
Shechtman and Irani [3] have tested their method on this video
using the same query video. Careful comparison shows that
both approaches achieve similar performance.
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Fig. 2. Tennis. (a) Query video of a stoke. (b) shows some searched results and searched strokes are marked by rectangles. (c)
are the similarity surfaces corresponding to the frames in (b).
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Fig. 3. Ballet. (a) Query video of a single turn. s(b) shows some searched results and searched strokes are marked by rectangles.
(c) are the similarity surfaces corresponding to the frames in (b).

5. CONCLUSIONS

This paper presents an approach to searching human behav-
iors in videos using spatial-temporal words (“bag-of-words”).
The contributions of this paper are twofold. One is that it
learnt spatial-temporal words to represent query and searched
videos that not only capture motion and appearance infor-
mation but also speeds up the scanning through integral his-
tograms. The other is that the patch-based feature is locally
invariant to a range of scale and position variations while
maintaining selectivity to some extent. The experiments demon-
strate the effectiveness of our approach.
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