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ABSTRACT

This paper introduces an efficient method to substantially

increase the recognition performance of a vocabulary tree bas-

ed recognition system. We propose to enhance the hypothesis

obtained by a standard inverse object voting algorithm with

reliable descriptor co-occurrences. The algorithm operates

on different layers of a standard k-means tree benefiting from

the advantages of different levels of information abstraction.

The visual vocabulary tree shows good results when a large

number of distinctive descriptors form a large visual vocab-

ulary. Co-occurrences perform well even on a coarse object

representation with a small number of visual words. An arbi-

tration strategy with minimal computational effort combines

the specific strengths of the particular representations. We

demonstrate the achieved performance boost and robustness

to occlusions in a challenging object recognition task.

Index Terms— Machine vision, Object recognition, Im-

age databases, Tree data structures, Clustering methods

1. INTRODUCTION

Recent research interest has focused on the problem of local

feature based object recognition in large databases (e.g. [1,

2]). Usually the approaches follow the common scheme of

interest point detection, descriptor calculation, and matching

based on comparison of query object descriptors against the

learned training set. One challenge is to organize this huge

number of high dimensional descriptors in such a way, that an

efficient query is possible. A tree is a well suited data struc-

ture used for fast indexing and encouraging recognition rates

have been achieved recently (e.g. [3, 4]). One typical example

is the approach of David Lowe [1], who organized SIFT de-

scriptors from all training images in a kd-tree with a best-bin-

first modification to find approximate nearest neighbors to the

descriptors of the query. The correspondences of the matched

descriptor pairs of the query and kd-tree patches have to be

confirmed or rejected in further verification and consistency

checks. Obdrzalek and Matas [4] used a binary decision tree

to index keypoints and minimize the average time to deci-

sion. The leaves of the tree represent a few local image areas

where every inner node is associated with a weak classifier.

Nistér and Stewénius [3] presented an approach where hun-

dred thousands of local descriptors are quantized in a hierar-

chical vocabulary tree. It is able to organize a database up

to 1 million images. They presented a scoring scheme which

results have to be verified in an additional post-verification

step using the geometry of the matched keypoints of the n top

ranked objects to improve the retrieval quality. Common to

most of the approaches is the need for such a post-verification

algorithm to guarantee for an acceptable performance rate and

stable recognition results. A popular method is using geomet-

rical constraints for eliminating false positives and strength-

ening correct hypotheses [3]. Another possibility are consis-

tency checks of local neighbor relations of interest points [2].

While all of these algorithms require additional compu-

tational overhead, the information we incorporate into our

system can be obtained almost for free from our own tree-

based representation. In particular, we build a hierarchical

vocabulary tree and apply inverse voting similar to Nistér and

Stewénius [3]. The inverse voting uses the leaves of the tree.

Another very coarse representation is taken from a lower tree

level. To obtain a high distinctiveness of that coarse rep-

resentation, we use a very efficient, yet memory and com-

putationally efficient specificity of spatial relations, namely

co-occurrences of descriptors. Spatial relations among key-

points have already been investigated by many authors (e.g.

[5, 6, 7, 8]) and it has been shown, that they can significantly

improve recognition performance. In contrast to other ap-

proaches we use a very extreme form of co-occurrences as

we represent only the presence or absence of co-occurrences.

The intuition behind is that the co-occurrence of descriptors is

very discriminative because it is very unlikely, that two neigh-

boring descriptors co-occur just by chance. To foster the hy-

potheses of inverse voting by co-occurrences we use a rather

simple but effective arbitration strategy.

2. DUAL-LAYER TREE HYPOTHESES

2.1. Building the visual vocabulary tree

We use a hierarchical k-means tree as data structure for fast

indexing and retrieval of descriptors as illustrated in Figure 1.

Instead of building the tree with hundred thousands of de-
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Fig. 1. Depiction of the vocabulary tree (k=4) and tree levels

used for inverse voting and co-occurrence representations.

scriptors, we propose a tree, where a lower number of vi-

sual words act as leaves, because Nistér and Stewénius have

shown in [3], that for more than 100K leaf nodes no sub-

stantial performance increase can be expected. So, we quan-

tize the descriptors with unsupervised agglomerative cluster-
ing using the proposed Average-Link algorithm with RNNs of

Leibe et.al. described in [9]. It has feasible runtime proper-

ties and can deal which such a large number of descriptors.

The obtained visual words are partitioned in k nodes using k-

means and propagated to the next level until no further split-

ting is possible. Thus we reduce the time spent for building

the tree from several days to a few hours.

2.2. Indexing & co-occurrence matrix

For indexing an object, we compute descriptors and choose

for each of them the nearest of the k cluster nodes in a deeper

level, starting at the root. Every leaf has a unique index and

we can represent every image as a set of indices. These are

used to store all pre-matches in an inverted file structure (IFS).

Every index of the IFS is assigned to all object- or image ID-

numbers where their descriptors have matched with this leaf.

For the verification step, we take the best matching cluster

center in a certain already calculated(!) lower k-means tree

level (typically lc = 2, 3, 4). Building the vocabulary tree in

an off-line calculation, we obtain nc = klc cluster indices in

a layer lc of the tree and branch factor k (number of children

for every node). For every keypoint in the image a corre-

sponding cluster index is stored. Note, that there is nearly

no additional computational effort necessary to extract that

representation out of the tree. To calculate the co-occurrence

matrix (with dimensionality nc), we simply identify the near-

est neighbor for every keypoint in image space. Thus, every

co-occurrence is identified by a pair of cluster indices which

we insert into the two-dimensional co-occurrence matrix. The

nearest neighbor property of certain interest points in the im-

age space is sometimes violated by spurious highlights, un-

stable detection of keypoints and of course aspect changes

introduced by different viewpoints. We alleviate this problem

by entering the nn nearest neighbors (typically nn = 3) in

the co-occurrence matrix. Only 1 − 2� of the possible co-

occurrences are assigned and multiple occurrences are even

much more unlikely. Thus it is possible to limit the entries

to the binary information whether a specific co-occurrence is

observed for a certain object or not (sparse storage scheme).

To build the full representation for a single object (multiple

viewpoints) all the co-occurrences of the trained images are

entered in one single two-dimensional matrix. Therefore, we

have exactly one co-occurrence matrix per object trained.

2.3. Vocabulary tree hypotheses & co-occurrence voting

To recognize an object or image with the vocabulary tree we

use the same routine as for indexing. We use the gathered

indices with our IFS to set up a scoring table for each object

or image. So, the table gives us an object voting list ranked

by the number of matched descriptors. The hypothesis has

to be normalized by the number of descriptors for each ob-

ject or image used in the indexing step to achieve fairness for

every database object or image to be recognized if the num-

ber of descriptors is very low and therefore the occurrences

in the IFS are very sparse. Instead of using a separated com-

putationally demanding method to improve retrieval quality,

we use a more efficient way to verify the generated hypoth-

esis by co-occurrences gathered online at a lower tree level.

Similar to the training step we build the co-occurrence matrix

for the query image directly from the cluster indices already

associated in the k-means tree on a lower level, and apply de-

liberately a very simple matching procedure. The matching

score is calculated by a simply AND operation of the sparse

co-occurrence matrices and by counting the number of result-

ing matches. So in fact, the matching is only a primitive max-

imum voting of congruent co-occurrences in the binary ma-

trices.

2.4. Arbitration strategy

The arbitration-component improves the result of the stan-

dard inverse voting approach with the additional information

obtained by the co-occurrences. As we want to avoid any

time consuming adaptation to a specific data set, we apply

a heuristic algorithm providing good results. The results of

‘inverse voting approach’ and ‘co-occurrences’ cannot be di-

rectly combined due to the different matching strategy. So

we ‘unify’ the output to an abstract layer. Each algorithm se-

lects the top ranked object as distinct answer and provides a

‘level of significance’: ‘unambiguous’, ‘low confidence’ and

‘unknown’ object (see Equation 1). The significance value k
of the voting histogram obtained by the inverse object voting
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algorithm is easily evaluated by computing the ratio between

the number of votes of the first and second ranked objects.

Best results are achieved if the thresholds are set to t1 = 2
and t2 = 1.6. The level of significance for co-occurrences is

determined by two facts. The first one is an absolute thresh-

old which assigns all objects with less than t co-occurrences

to the ‘unknown’ confidence level (typically t = 5). The sec-

ond one is related to the ‘peakedness’ of the voting histogram

for co-occurrences. As a quantitative estimate for that, we

calculate the kurtosis of the discrete voting histogram func-

tion. As the ‘ideal kurtosis’ (impulse function) for a perfect

voting histogram is proportional to the number of objects (dis-

crete samples in histogram), we normalize the kurtosis. We

can choose the decision thresholds for assignment to different

confidence levels (t1, t2) relative to the ‘ideal kurtosis’. In our

experiments we obtained best results by setting t1 = 0.33 and

t2 = 0.1. A special handling is required if both approaches

have the same level of significance but vote for different ob-

jects. In this case, we search for the ranking of each selected

object in the other algorithms ranking cue.

⎧
⎨

⎩

k >= t1 ⇒ ‘unambiguous′

t2 <= k < t1 ⇒ ‘low confidence′

k < t2 ⇒ ‘unknown′

⎫
⎬

⎭
(1)

3. EXPERIMENTS

For object recognition we took a subset of 400 objects from

the publicly available Amsterdam Library of Object Images

(ALOI) [10] and detect Lowe’s Difference of Gaussian (DoG)

detector together with SIFT-keys [1]. The objects were se-

lected with respect to a sufficient number of keypoints de-

tected on the objects surface and the scales of the obtained

keypoints were restricted in order to be robust against pixel

noise and to avoid the detection of too large regions. We used

descriptors from a subset of 100 objects (500 images, ±60o

in steps of 30o) and performed agglomerative clustering. Af-

ter that, we generated a k-means tree with a branch factor of

k = 9 with about 140.000 visual words.

In order to capture enough variances in the appearances

of an object for training, we presented 5 views of 400 objects

to the system (2000 images, ±60o in steps of 30o), where

300 objects presented totally new descriptors. To evaluate the

recognition rate we took 13 views from all 400 objects (5200

images, ±60o in steps of 10o).

3.1. Performance comparisons

In this experiment we investigated the influence of additional

information (co-occurrences) obtained from different levels

of the tree. In Figure 3(a) the results of our method and the

pure inverse voting result on the whole rotation range of 120

degrees are shown. The blue curve describes the results from

the standard inverse voting, while the other curves are ob-

Fig. 2. Four sample query images, the intermediate outcomes

and the final results are shown from left to right. While cor-

rect hypotheses are marked with a green border, a red border

indicates a wrong outcome.

tained incorporating information from three different vocab-

ulary tree levels for co-occurrences into our final arbitration

strategy. Using additional information from level 2 results in

an average performance increase of even 4%. While access-

ing information from level 3 leads to an overall increase of up

to 12% there is no further performance improvement when

taking into account information from higher levels (level 4

results in 11%).

In Figure 2 four query examples, the intermediate results

and the final object hypotheses are depicted. In the first two

cases, the use of co-occurrences enables our arbitration strat-

egy to draw the right decision even if the inverse voting prefers

the wrong object. In the third case the arbitration-module still

correctly favors a strong inverse voting result over a weak co-

occurrence voting. The last object is labeled incorrectly, but

note that the query object is a member of the group of objects

chosen.

3.2. Results obtained by occlusion and runtime

To support the claim on the robustness of the obtained per-

formance increase, we made some experiments with varying

partially occluded objects. We simulate the occlusions by re-

moving a substantial part of the objects appearance apply-

ing a black rectangle. As the objects of the ALOI database

are not normalized with respect to their appearance size, we

determine the relative area of occlusion for each object sep-

arately with respect to the lateral cut of the particular ob-

ject observed. Figure 3(b) shows the mean recall rates for

a different amount of occlusions. The mean recall rates for

the (standard) inverse voting approach and our combined ap-

proach (arbitration strategy) remain rather stable up to an oc-
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Fig. 3. Comparison of different recall rates for different tree

levels used for the co-occurrence matrix (a) and Mean recall

rates of the inverse voting approach and our arbitration strat-

egy for a different amount of occlusions (b) .

clusion about 40%. The performance increase by our com-

bined approach is also constant about 8-10% with respect to

the standard approach for all tested occlusions. It is possible

to correctly identify the objects even with a fistful number of

descriptors. A motivation for the usage of weaker descrip-

tors comes from the fact, that the recognition speed of the

current implementation is limited by the runtime of the al-

ready highly optimized C/C++ implementations of keypoint

detection (DoG) and their descriptors (SIFT) [1] while our ap-

proach is currently implemented in MATLAB. Table 1 gives

a raw over-view about the relative runtime effort spent in dif-

ferent components of the recognition stage. Only 17.4% of

the overall burden for recognition is used for the assignment

of obtained query descriptors to the corresponding cluster in-

dices. The computational costs for the voting and arbitration

strategy parts are nearly negligible. Reducing the calculation

effort for keypoint detection and descriptor calculation by co-

evally obtaining high recognition performance would further

improve the efficiency of our approach.

4. CONCLUSION AND FUTURE WORK

In this paper we have introduced a new method to increase the

recognition performance of a vocabulary tree based recogni-

tion system. We improved the hypotheses of an inverse object

voting algorithm by a very simple specificity of spatial rela-

tions, namely descriptor co-occurrences. A rather heuristic

component runtime (ms) %
DoG & SIFT calculation 3351 80.6

assignment (tree propagation) 723 17.4

inverse voting 62 1.5

co-occurrences 15 0.4

arbitration strategy 4 0.1

Table 1. Mean runtimes of certain recognition components

obtained on a Intel Xeon 2.80GHz CPU.

but powerful arbitration strategy with minimal computational

effort combines the specific strengths of the particular repre-

sentations. The achieved increase of performance has been

demonstrated in a challenging object recognition task and we

have also shown the robustness of the approach even for a

substantial amount of occlusions. The main advantage of our

approach is the fact, that we use two different levels of infor-

mation abstraction provided in various layers of the tree. Thus

we can avoid the calculation of an additional representation

for the descriptor co-occurrences. As the main computational

burden of the recognition system is carried by calculation of

the keypoints and their descriptors, in future research we will

use our approach to work with even weaker detectors and de-

scriptors but keeping recall rates high by combination of two

or more levels of information abstraction.
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