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ABSTRACT

Tensor Scale is a morphometric parameter that unifies the

representation of local structure thickness, orientation, and

anisotropy, which can be used in several image processing

tasks. This paper introduces a new application for tensor

scale, which is the detection of saliences on a given contour,

based on the tensor scale orientations computed for the entire

object and mapped to its contour. For validation purposes,

we present a shape descriptor that uses the detected contour

saliences. Experimental results are provided, comparing the

proposed method with our previous Contour Salience De-

scriptor (CS). We show that the proposed method can be not

only faster and more robust in the detection of salience points

than the CS method, but also more effective as a shape de-

scriptor.

Index Terms— Image processing, Image shape analysis,

Information retrieval

1. INTRODUCTION

The saliences of a shape are defined as the higher curvature

points along the shape contour [1], or vertex points along the

contour with first derivative discontinuity [2]. Their detection

is the key to various applications in image processing (e.g.,

image registration, polygonal approximation, motion analy-

sis, and shape description [3]).

A salience detector should satisfy import criteria [4], such

as: all true saliences should be detected; no false saliences

should be detected; salience points should be well localized;

robustness with respect to noise (e.g., rounded corners or

peaks on the object’s contour); and efficient computation.

In this paper, we extend the application of tensor scale

for salience detection on an object’s contour obtained from a

binary image. Tensor Scale [5] is a morphometric parameter

yielding a unified representation of local structure thickness,

orientation, and anisotropy. That is, at any image point, its

tensor scale is represented by the largest ellipse centered at

that point and within a homogeneous region.

Other methods for salience detection based on derivatives

present instability problems due to points with infinity or very
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large curvature. Among the existing solutions, we selected the

Contour Salience (CS) [3] method for comparison, because of

its interesting previous results. We show that our method can

be not only faster and more robust in the detection of salience

points, but also more effective as a shape descriptor, using the

same experiment set used for the CS evaluation.

2. BACKGROUND

In [5], Punam et al. introduced a local scale method – Tensor

Scale – represented by the largest ellipse within a homoge-

neous region and centered at a given pixel p. This method

defines the ellipse uniquely by three factors: orientation (an-

gle of the major axis with the horizontal axis), anisotropy (a

relation between the major and the minor axes), and thickness

(length of the minor axis).

A tensor scale ellipse is calculated from sample lines that

are traced around a given pixel, from 0 to 180 degrees (Figure

1(a)). The axes of the ellipse are determined by computing

the intensities along each of the sample lines and the location

of two optimum edge points on these lines (Figure 1(b)). The

next step consists of repositioning the edge locations to points

equidistant to the given pixel, following the axial symmetry

of the ellipse (Figure 1(c)). The computation of the best-fit

ellipse to the repositioned edge locations is done by Principal

Component Analysis (PCA) (Figure 1(d)).

These computations are performed for every pixel of the

image. A critical drawback is that the algorithm proposed

in [5] is computationally expensive and quite prohibitive for

some image processing tasks. For this reason, Miranda et

al. [6] proposed an efficient implementation of the original

method, which differs in the following aspects.

The first change is in the edge location phase. The adopted

approach is to go along each pair of opposite segments, al-

ternately at the same time, instead of going along one entire

segment. By doing this, the reposition phase is no longer nec-

essary. The second change is the use of two connected thresh-

olds to simplify the method of detecting edges. The third and

final change is the improvement of the ellipse computation

phase. They proposed a function that gives the angle of the

ellipse directly, instead of using PCA.
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Fig. 1. Original method for Tensor Scale Computation.

3. TENSOR SCALE COMPUTATION AND
CONTOUR MAPPING

The proposed method begins with the tensor scale computa-

tion for all pixels inside an object, using the algorithm pro-

posed by Miranda et al. [6], summarized in the previous sec-

tion. Next, it uses the Euclidean Distance Transform (EDT)

(Section 3.1) to map the tensor scale orientations onto the ob-

ject’s contour (Section 3.2).

3.1. Euclidean Distance Transform

The Euclidean Distance Transform (EDT) is calculated using

the Image Foresting Transform (IFT) [7]. For a given ob-

ject O, the IFT-Euclidean Distance Transform [3] (IFT-EDT)

computes at the same time, for every object’s pixel, its clos-

est pixel on the object’s contour S and the squared Euclidean

distance between them. S is a set of contour pixels following

a given order along the contour of O. The first information

resulted by the IFT-EDT is stored into a root map R while the

second is stored in a cost map C. The root map is used in

the next step, to map the orientation of the ellipses onto the

contour S.

3.2. Tensor Scale Contour Mapping

After computing the IFT-EDT, each contour pixel s in S is

root of a region (influence zone) formed by pixels in O which

are closest to s than to any other root in S. Every pixel q
in this region will have R(q) = s. The idea is to map to

s the orientation of the ellipse with highest anisotropy in its

influence zone (Algorithm 1).

Algorithm 1 outputs two vectors (MapOri and

MapAni) that are updated so that MapOri(s) and

MapAni(s), for all pixels s ∈ S, contain the orientation of

the ellipse with the highest anisotropy in the influence zone

of s and the value of this anisotropy, respectively. Contour

Algorithm 1 Mapping orientations to the object’s contour

Input: An binary image I with a single object O, a set S of

contour pixels of O, the root map R resulting from IFT-EDT,

and Anisotropy and Orientation vectors that contain the

tensor scale anisotropy and orientation, respectively, com-

puted for all pixels in O (Section 2, algorithm by Miranda et

al. [6]).

Output: MapAni and MapOri vectors.

for all pixel p ∈ S do
MapOri(p)← 0;

MapAni(p)← 0;

end for
for all pixel p ∈ object O do

if MapAni(R(p)) < Anisotropy(p) then
MapAni(R(p))← Anisotropy(p);
MapOri(R(p))← Orientation(p);

end if
end for

points with no influence zone borrow the orientations of the

neighbors.

4. SALIENCES DETECTION

In order to locate the salience points, we calculate the dif-

ferences between adjacent mapped orientations in S. This is

possible because high curvature points cause abrupt change

of orientation along the contour.

The difference value at pixel p ∈ S is Difference(p) =
AngularDistance(MapOri(p−1),MapOri(p+1)), where

the function AngularDistance(α, β) gives the smallest an-

gle between the orientations α and β.

Now, we can use a threshold value to eliminate low values

of difference along the contour. Figure 2 shows the detected

saliences (dots) using threshold 16◦, i.e, saliences related to

angle differences lower than 16◦ were not represented.

5. SHAPE DESCRIPTION BY SALIENCES

Corners and high curvature points concentrate more informa-

tion than other points of the shape [8]. For this reason, it is

intuitive to conceive that curvature is an important key for the

identification of many geometric aspects. Based on this, we

use the saliences as key points for shape description. After the

salience detection phase, we need to determine the salience

value of the points. It is known that the influence zones of

salience points are greater than the influence zones of other

points along the contour and the influence area of a convex

point is greater outside the contour than inside, and vice-versa

for concave points [3].

For each detected salience, the salience value are esti-

mated using the influence zone of the pixels in S, which is
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Fig. 2. Visualization of salience points.

computed from the root map R generated by IFT-EDT. Nega-

tive values are used for concave points and positive values for

convex points.

The descriptor is formed by the same feature extraction

and metric functions used in CS [3]. The only difference be-

tween our approach and the original CS descriptor is the qual-

ity of the salience points detected along the contour.

The feature vector extraction works as follows. One ar-

bitrary salience point is taken as reference and the method

computes the relative position of each salience point with re-

spect to the reference point, following the order of points in

S. The vector is composed by the salience values and the their

relative positions.

There are two drawbacks in this kind of method that have

to be considered for matching two feature vectors: the ref-

erence point may not be the same for different vectors and

feature vector of distinct objects may differ in size. There-

fore, the matching is a heuristic algorithm that registers the

vectors using the reference points and computes their similar-

ity taking into account the different sizes. This algorithm is

based on the matching algorithm described in [3].

6. EXPERIMENTAL RESULTS

For the experiments, two databases (Fish-shape and the

MPEG-7 Part B) were used in part or entirely.

The Fish-shape1 database consists of 1100 fish shapes.

The classes were formed by ten variations of each original im-

age with rotation and scaling, resulting in 1100 classes with

10 images each one.

The MPEG-72 Part B database consists of 1400 shapes

divided in 70 classes of various shapes (20 images in each

class).

We evaluated our method with respect to two aspects.

First, the quality of the estimated salience points (Section

6.1). Second, the impact of a better estimation in the results

of the CS descriptor (Section 6.2).

The CS approach of detecting saliences (skeleton-based

approach) begins with the calculation of multiscale internal

and external skeletons by label propagation. Then, the

1http://www.ee.surrey.ac.uk/research/vssp/imagedb/demo.html
2http://www.chiariglione.org/mpeg/

(a) TS. (b) Skeleton.

Fig. 3. Saliences granularity for the TS- and Skeleton-based

approaches.

saliences are detected by matching each salience point of the

internal skeleton to one convex point of the contour and each

salience point of the external skeleton to one concave point of

the contour.

6.1. Salience Detection

The first consideration is concerned with performance issues.

The Tensor Scale based approach (TS-based approach) was

twice faster (speedup of 2.04), on average, than the skeleton-

based approach used in CS [3], when executed for the entire

Fish database. Experiments considered that the methods were

executed on a AMD 64 3000+ Processor, with 1GB of RAM

memory.

The second consideration is that the TS-based method is

computed locally, looking for each mapped orientation and

for its neighbors along the contour. The skeleton-based

method is more global, because it uses the internal and exter-

nal skeletons of the whole shape for salience detection. This

difference in granularity also makes the detection of saliences

less robust in the skeleton-based approach, because the mul-

tiscale skeletons have to be thresholded to obtain salience

points. This threshold represents a smoothing of the contour

and, consequently, loss of some important saliences. In order

to detect these saliences, we would have to reduce the thresh-

old. The TS-based method is also dependent of a threshold,

but it is much easier to fix a single threshold for the entire

database, which is the case of TS-based approach, than to

find the best threshold for every single image in the database,

which is the case of the skeleton-based approach.

Figure 3 shows the differences between the two methods.

While the skeleton-based approach has higher granularity, de-

tecting only the twelve global saliences presented in the ob-

ject, the TS-based approach detects more abrupt differences

of orientation that exist on the contour.

For effectiveness comparison, we constructed a database

consisting of 42 shapes of the Fish-shape database and 112

shapes of the MPEG-7 Part B database, resulting in 2835
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Measures Skeleton TS 10 TS 12 TS 14 TS 16 TS 18

Recall 0.956 0.964 0.964 0.963 0.963 0.962

Precision 0.903 0.889 0.923 0.946 0.963 0.968

Accuracy 0.718 0.840 0.862 0.874 0.875 0.867

Table 1. Effectiveness measures for skeleton- and TS-based

approaches.

saliences. The images were chosen by taking into account the

obviousness of the contour salience points location, in order

to not favor any method. Then, a set of ground truth images

were constructed with the location of the salience points.

This experiment relies on counting the true positive

saliences (T+) and false positive saliences (F+) for the ground

truth images, using both methods. After this counting, three

effectiveness measures were calculated: recall, precision, and

accuracy. Recall (Rec) and precision (Prec) are computed

as Rec = T+
T++T−

and Prec = T+
T++F+

, where T− is the

number of true negatives, and (T+ + T−) represents the to-

tal number of points. The accuracy (Acc) is calculated as

Acc = T++T−
T++T−+F++F−

, where F− (false negatives) repre-

sents the number of miss-detections.

The results with different threshold values for TS-based

approach are presented in Table 1. The threshold for the

skeleton-based approach was fixed in 5%, that is the value

recommended in [3] for this database.

The TS-based method has better accuracy than the

skeleton-based, for all tested thresholds. In the TS-based

method, the accuracy was maximized with threshold value

16 and this is the value adopted for this method in the experi-

ments described in the next section.

6.2. Shape Descriptor

A good effectiveness measure should capture the concept of

separability. Separability indicates the discriminatory ability

between objects that belong to distinct classes. This concept

was introduced for CBIR in [3].

Both descriptors were computed for Fish-shape database

and the separability curves for the two evaluated descriptors

are showed in Figure 4.

The TS and CS approaches have equivalent performance

for search radii less than 25% of their maximum distance.

From this point to 65%, the TS is more robust and effective

then CS. By analyzing Figure 4, we observe that TS is more

effective or equal to CS in 80% of the search radii.

7. CONCLUSIONS AND FUTURE WORK

This paper introduces a salience detector based on Tensor

Scale. For this purpose, it uses the differences between adja-

cent tensor scale orientations mapped onto the object’s coun-

tour. The experimental results showed that this method is
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Fig. 4. Multiscale separability curve for Fish database.

faster and more robust than saliences detection proposed in [3].

We also proposed a new version of CS descriptor, using

our approach to detect saliences. The experiments indicate

that the new approach is more effective than CS up to 80% of

the search radii, according to multiscale separability measure.

We are currently comparing the proposed method with

other shape descriptors and using more image databases.
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