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ABSTRACT
We propose and evaluate a method to identify tornadoes auto-
matically in Doppler radar imagery by detecting hook echoes,
which are important signatures of tornadoes, in Doppler radar
precipitation density data. Our method uses a skeleton to rep-
resent 2D storm shapes. To characterize hook echoes, we
propose four shape features of skeletons: curvature, curve
orientation, thickness variation, boundary proximity, and two
shape properties of tornadoes: southwest localization and the
ratio of storm size to model hook echoe size. To evaluate the
hook echo detection algorithm, the hook echoes detected in
several radar datasets by the algorithm are compared to those
proposed by an expert. The effectiveness of the algorithm is
quantified using a Critical Success Index (CSI) analysis.

Index Terms— Doppler radar, precipitation density, tor-
nado signatures, skeletons, hook echoes

1. INTRODUCTION
Every year tornadoes cause considerable damage and loss of
life in North America and around the world. Automatic tor-
nado detection is of great interest to meteorologists for the
nowcasting/forecasting of tornadoes from Doppler radar im-
ages. The hook echo is an important signature of tornado
existence, having been of interest to meteorologists for more
than 50 years (Markowski’s recent review [1] indicates the
first observation of a hook echo in conventional radar was on
April 9th, 1953 by the Illinois State Water Survey). A classic
hook echo can be seen as the yellow and orange hook in the
bottom left corner of the image in Figure 1, a precipitation
density image taken from the dataset of radar images of the
Oklahoma tornado outbreak on May 3rd 1999.

2. RELATED WORK
3D Doppler radar provides weather information through its
precipitation density, radial velocity and spectrum width (ve-
locity variance) data. The NexRad Level II datasets that we
are working with were collected by the WSR88D (Weather
Surveillance Radar C 1988 Doppler) weather radar system.
See [2] for details.
2.1. LITERATURE SURVEY
In this paper, three tasks are addressed: (1) how to represent
the 2D shape of a storm; (2) how to model salient features of

Fig. 1. A classic hook echo (colored yellow and orange),
with the color mapping of the precipitation density value
shown on the right hand side. The tornado associatedwith
this echo was part of the May 3rd 1999 Oklahoma severe
weather storm.
a hook echo constrained by this representation; and (3) how
to use this model to find hook echoes that correspond to tor-
nadoes in radar data. We use skeletons to perform these tasks.
2D skeletonization is a process of transforming a 2D object
into a 1D curve representation (See Figure 2a).
We use the Hierarchic Voronoi Skeleton (HVS) algorithm

[3] in our work. The HVS algorithm extracts skeletons of
shapes in multi scales, based on the salience of different skele-
ton branches and forms a skeleton pyramid in a coarse to fine
structure. An example of the highest level skeleton computed
for a storm is shown in Figure 2a. The HVS algorithm is
ideal for our application because it is tunable for extracting
the most salient skeleton backbone of a storm shape.

2.2. HOOK ECHO DETECTION RESEARCH
Current NEXRAD radar systems have some automatic algo-
rithms to identify circulation signatures in Doppler radar ob-
servations. The WSR-88D MDA/TDA algorithms use the
change in radial velocity to identify circulations and shears
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Fig. 2. (a) The skeleton of an actual storm shape and its
disk reconstruction (the disk centered at each medial axis
point is the largest disk contained in the shape), (b) the
curvature variation along the skeleton (A indicates a high
curvature location and C indicates the hook’s orientation),
(c) straightening the skeleton to eliminate its curvature
property and only show its thickness variation property
and (d) the thickness variation along the skeleton (B indi-
cates the fat-thin-fat location).

[4]. The linear least squared derivative technique (LLSD)
computes rational shear and divergence from the radial ve-
locity observations using a least square fit of the data [5].
Multi-Doppler based 2D wind field analysis computes the 2D
wind vectors from the radial velocity observations from two
or more radars with sufficient viewing angle differences [6].
The Dual Polarimetric debris signature technique uses the in-
formation from polarimetric observations that debris within
tornadic events have a lower cross-correlation coefficient and
a differential reflectivity near zero [7]. A serious flaw in using
radial velocity profiles to detect tornadoes is that the velocity
measurements may be aliased because the maximum velocity
magnitude that can be measured is about 45km/hr while the
wind speeds in a tornado are typically 160km/hr or more.

3. HOOK ECHOMODELLING METHODS
In this section, we describe our skeleton-based hook echo de-
tection approach. The basic steps of our detection algorithm
are described below.
3.1. STORM SEGMENTATION
The first step is to segment the storms in the Doppler radar
reflectivity images. Since the HVS algorithm uses binary in-
put, we need to: (1) bilinearly interpolate the raw precipita-
tion density data at elevation 0 into smooth connected image
data, (2) threshold the image into storms using a precipita-
tion density value of 35dBZ (as suggested by Johnson et al.
[8]) (3) eliminate unwanted artifacts (i.e. small shapes) using

two passes of 3× 3 median filtering and (4) fill “holes” in the
shapes using a floodfilling based algorithm.

3.2. SKELETONIZATION
We use the C source code1 for HVS skeletonization [3]. We
tuned this algorithm to capture the backbone and the hook-
like shapes near the storm boundary. We use only the highest
level (coarsest) skeleton available from a hierarchy of com-
puted skeletons. After the skeletonization, storm shapes are
converted to polylines to capture the topological information
of the storms. A skeleton is composed of one or more chains
of skeleton nodes (a skeleton may exhibit a bifurcation). Each
skeleton node is denoted by its x and y coordinates and radius
value (maximal radii of all disks centered at this point that are
constrained to be completely inside the shape boundary).

3.3. BASIC FEATURES AND PROPERTIES
The basic skeletal features and tornado properties that we de-
tect are:

1. Curvature: the curvature of the hook skeleton has a
large absolute value. As shown in Figures 2a and 2b,
along the skeleton branch, the position of the hook (in-
dicated as A) has a relatively high curvature value.

2. Orientation: the orientation of the hooks can help to
improve the detection accuracy. In Figure 2b, the ro-
tating arrow labelled C indicates the orientation of this
hook as counterclockwise (from the inner side to the
endpoint). Most tornadoes rotate counterclockwise in
the northern hemisphere.

3. Thickness Variation: a hook skeleton has a distinctive
fat-thin-fat (bottle-neck) thickness variation along the
hook. This distinctive radius variation occurs along the
skeleton in close proximity to the region of high skele-
ton curvature. Figure 2c shows the result of straighten-
ing the curved skeleton in Figure 2a. This straightening
suppresses the curvature property and only the thick-
ness variation along the skeleton is illustrated. In Fig-
ure 2d, we can see the position of a hook (indicated as
B) which exhibits the fat-thin-fat property.

4. Boundary Proximity: the hook is near (touching or
almost touching) the boundaries of the protruding parts
of the storm shapes, and these protruding parts can be
well captured by skeletons. As shown in Figure 2d, if
a certain distance threshold value for being near such
boundaries is set, for example, in the range M and N
marked in the figure, then a hook can only be detected
in those ranges.

5. Southwest Localization: Most hook echoes display
their hook shapes in the southwest direction of the storm
in the northern hemisphere.

1http://www.cs.sunysb.edu/ algorith/implement/skeleton/distrib/
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6. StormSize: a hook only happens in relatively big storms.
We use the length of skeleton (the maximum arclength
distance marked on the skeleton distance map) to esti-
mate the actual storm size.

3.4. DISTANCE METRIC
We introduce a distancemetric on skeletons: ‘Arc LengthDis-
tance’. This distance metric measures the distance from one
node to another node using the accumulated sum of length of
line segments along the path.

3.5. COMPUTATIONOFCURVATURE, ORIENTATION
AND SOUTHWEST LOCALIZATION
The computation of curvature and orientation are done in the
same process. We evaluate the curvature value for each skele-
ton node using a local window based method. The algorithm
we use to compute curvature is a 2nd order polynomial in-
terpolation based method due to [9]. For a skeleton node of
interest, Node b, we first find the two skeleton nodes, Nodes
a, c on each side along the skeleton piece that have the same
arclength distance to Node b (this usually involves an interpo-
lation calculation as explained below.) And then we use these
three nodes to evaluate the curvature for the location of Node
b.
Since there is usually no node that has the exact distance

compatible with the parameter window size to the node of
interest, we interpolate intermediate nodes along the skele-
ton which have the exact distance to the centered node. Then
we fit a 2nd order polynomial to these three nodes (the cen-
tered node plus the two interpolated end nodes on each side)
to measure the curvature [9]. We use a threshold on this value
to judge whether a candidate location has enough curvature
or not to be accepted or rejected as a high curvature point.
When computing the orientation, we use the same three

nodes, Nodes a, b, and c used when estimating the curvature
value. First, we construct two vectors: one is from one end
node to the centered node while the other is from the centered
node to the other end node. Then we compute the cross vector
product of these two vectors. The sign of the result indicates
the orientation. We always compute orientation using skele-
ton nodes going from the storm boundary to its interior [2].
The southwest criterion is also computed using the two

end nodes of the local window, as described above. We con-
struct a vector, which is from one end node to the other end
node along this direction. For southwest protruding hooks,
this angle should be in the range [π, 3/2π], that is, lying in
the third quadrant.

3.6. THICKNESS VARIATION
The location of a fat-thin-fat region (see Figure 2d) corre-
sponds to a local minimum. We compute the derivatives of
this radius function, f(x), to locate fat-thin-fat positions in
the following manner. Suppose that the function f(x) can be
differentiated twice and that x = a is a critical point (f ′(a) =

0). Then, if f ′′(a) < 0 the critical point a is a local maxi-
mum, and if f ′′(a) > 0 the critical point a is a local mini-
mum. If f ′′(a) = 0 then we can draw no conclusions. We
fit a quadratic function of the form f(x) = ax2 + bx + c to
N nodes and solve (in the least squares sense) for a, b and c.
Then f ′(x) = 2ax + b and f ′′(x) = 2a. These values allow
the fat-thin-fat criterion to be evaluated at each x.

3.7. BOUNDARY PROXIMITY AND STORM SIZE
For boundary proximity, we only need to threshold the dis-
tance value for each node using 2 thresholds so that the node
is near an endpoint but not too close. ‘Storm size’ is used
to rule out small-sized storms that are very unlikely to con-
tain hooks. We use the skeleton distance map to estimate the
storm size for this feature by finding the node in the distance
map that is furthest from the endpoints. Then this distance
value can be used as an estimate of the skeleton size (i.e. the
storm size).

4. EXPERIMENTAL RESULTS
We use three datasets: KTLX19990503 fromMay 3rd, 1999
Oklahoma City, KTLX20030508 fromMay 8th, 2003 Okla-
homaCity andKUEX20030622 fromGrand Island/Hastings.
For each dataset, only the lowest elevation was used. Our me-
teorologist, Paul Joe, marked hooks as either ‘well-formed’
(definite) or ‘marginal’ (potentially) to provide groundtruth.
The six criteria introduced above are used to detect hook

echo locations under an AND condition. Thresholds were
chosen heuristically based on empirical observations [2]. We
compare detection results of our algorithm with groundtruth
and classify the results into three categories: hits: our detec-
tion matches with the groundtruth; misses: our groundtruth
indicates it is a hook while our detection algorithm indicates
it is not; and false alarms: groundtruth indicates it is not a
hook, while our detection result indicates it is.
The results for dataset KTLX19990503 (235621e0) are

shown in Figure 3. Hook echo detection results are printed on
the skeletons and relevant numbers are printed in the legends
of the figures. For each detected location, its curvature, ori-
entation, thickness variation, boundary proximity, reflectivity
and direction angle values are printed in the legend (lower
right corner of the image). The format of a legend item is:
Ex: y/z/m/n/p where x is the detected hook echo num-
ber, y is the absolute value of the curvature value, the sign of
y shows the orientation (+ for counterclockwise and − for
clockwise), z is the thickness variation value, m is the bound-
ary proximity value, n is the reflectivity value and p is the
direction angle value (in degrees).
We use the common statistical analysis CSI method, which

is a quantitative verification based on Contingency Tables and
Associated Scores. The forecast (our detection results) and
observed (groundtruth from our meteorologist) are classified
in a table. From the contingency table we can compute the
False Alarm Ratio (FAR) [number of false alarms divided
by number of positive forecasts – the fraction of predicted
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Datasets Well-formed Marginal False POD FAR CSI
Hooks Detected Hooks Detected Alarms Score Score Score

KTLX19990503 1
st half, 43 frames 57/66=86.4% 30/46=65.2% 68 77.7% 43.9% 48.3%

KTLX19990503 2
nd half, 43 frames 45/60=75.0% 42/73=57.5% 202 65.4% 69.9% 26.0%

KTLX19990503 whole, 86 frames 102/126=81.0% 72/119=60.5% 270 71.0% 60.8% 33.8%
KTLX20030508 whole, 43 Frames 21/23=91.3% 31/40=77.5% 41 82.5% 44.1% 50.0%
KUEX20030622 whole, 182 frames 40/63=63.5% 88/198=44.4% 255 49.0% 66.6% 24.8%
Total (for all datasets) 163/212=76.9% 191/357=53.5% 566 62.2% 61.5% 31.2%

Table 1. Resulting scores for each radar dataset for our detection algorithm.

E03:+0.039/+0.054/29.1/50/207

E01

E03

E05
E04

E02

E01:+0.029/−0.023/21.2/46/202
E02:+0.024/−0.021/18.0/48/184

E04:+0.036/+0.040/23.4/52/237
E05:+0.057/+0.025/13.6/43/212

Fig. 3. Experimental results for radar reflectivity images
March 3rd, 1999 data, 23 hours, 56 minutes and 21 sec-
onds for elevation 0.

hooks that do not occur], the Probability of Detection (POD)
[number of hits divided by number of observed events – the
fraction of observed events that were correctly forecast] and
the Critical Success Index (CSI) [number of hits divided by
number of hits, misses and false alarms – how well the fore-
casted events correspond to the observed events].
We give the experimental results for the three datasets we

have studied in Table 1. These results show that our algorithm
can detect well-formed hook echoes properly but for marginal
hooks, the detection ratio is lower than that of well-formed
hooks. This is reasonable, since marginal hooks don’t have as
clear a hook shape as well-formed hooks. Note the POD, FAR
and CSI scores are calculated for the union of well-formed
and marginal hooks to show the overall performance of our
algorithm.
We split the KTLX19990503 dataset in half and analyze

each set of detection results separately. As shown by the first
and second row entries in Table 1, such differences exist even
in the same dataset. By further analyzing the radar images, we
found that our algorithm prefers clean and clear radar images
which contain well separated individual storm blobs, rather
than ‘messy’ and loosely connected storm blobs.

5. CONCLUSIONS
We presented an automatic tornado detection algorithm based
on detecting tornado hook echoes via skeletons. We devised
a number of basic features of hook echoes: curvature, ori-

entation, boundary proximity, thickness variation, southwest
localization and storm size. These features work well for the
hook echo modelling task. Future work includes incorporat-
ing radial velocity and spectrum width data in our algorithm,
and using supervised learning to tune the algorithm parame-
ters automatically.
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