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ABSTRACT

It has been recently discovered that a faithful representation for the
shape of some simple distributions can be constructed using invari-
ant statistics [1, 2]. In this paper, we consider the more general case
of a Gaussian mixture model. We show that the shape of generic
Gaussian mixtures can be represented without any loss by the dis-
tribution of the distance between two points independently drawn
from this mixture. In other words, we show that if their respective
distributions of distances are the same, then there exists a rigid trans-
formation mapping one Gaussian mixture onto the other. Our main
motivation is the problem of recognizing the shape of an object rep-
resented by points given noisy measurements of these points which
can be modeled as a Gaussian mixture.

Index Terms— Object recognition, shape, invariant statistics.

1. INTRODUCTION

Many applications depend on being able to identify or retrieve ob-
jects based on their shape. A good shape representation method is
crucial for being able to do this quickly and effectively [3, 4]. It is
often reasonable to approximate the objects to be recognized by a
set of distinguished points called landmarks [S]. For example, the
minutiae of a fingerprint form a configuration of points, or point-
set, which can be used to decide what are the best matching candi-
dates in a database of fingerprints. In many situations, including the
case of minutiae, it may be difficult to label all the points accurately.
One thus seeks a faithful representation which is invariant under a
relabeling of the points. Boutin and Kemper [1] considered the de-
terministic problem of determining whether two point-sets are the
same up to a rigid transformation. They showed that the distribution
of the pairwise distances between a generic point-set is a faithful
representation of the shape of this point-set. Thus, point-sets with
exactly the same shape can be easily identified simply by comparing
the distribution of their distances. We seek a modification of Kem-
per and Boutin’s method which can be applied to the case where the
positions of the points are measured with some error, as in the case
of minutiae for example. In particular, we seek a way to quantify the
probability that the observed point samples come from distributions
which have the same shape .

In a previous publication [2], it was shown that the shape of a
generic mixture of 2D spherical Gaussians, each equally weighted
and with the same standard deviation, can be represented without
any loss by the distribution of the distance between a pair of points
drawn independently from this spherical Gaussian mixture distribu-
tion. In this paper, we show how to extend this result to the case
of a 2D Gaussian mixture. This is an important step towards find-
ing an efficient shape comparison method for objects represented by
landmarks. Indeed, our result implies that the difficult problem of

1-4244-1437-7/07/$20.00 ©2007 IEEE

VI - 369

comparing the underlying distributions of sets of point samples up
to a rigid transformation boils down to the simpler problem of com-
paring the underlying distributions of distances.

2. THE DETERMINISTIC CASE

In this section, we summarize the result of Boutin and Kemper [1]
for the specific case that concerns us (theirs is proved in a much
more general setting). It will be used in the next section for proving
our result. We consider a point-set in the plane. Let us denote the
points by p1, . .., pn € R2. Then we consider the set of all pairwise
distances (squared, for simplicity) between the points:

Ay = |lps — pyl|* forall i, j =1,...,n,i # j.

We remove the pair of indices associated to each distance and only
store its value. In other words, we consider the bag of all distances,
i.e. the unordered set of all A;;’s of the point-set p1, ..., pn:

{Aij }i;éj :

It turns out that the bag of distances provides a faithful representation
for the shape of generic point-sets, i.e. it faithfully represents most
point-sets up to a global rotation, reflection and translation (so-called
rigid transformation). Obviously, two-point sets which are related by
arigid transformation also have the same bag of distances. However,
having the same bag of distances does not necessarily imply having
the same shape. A counter-example, which was presented in [1], is
given by the point-sets

{(070)7(470),(37 1)7(37_1)}7 (1)
{(070)7(470)7(17_1)7(37_1)}7 (2)

which have different shapes but have the same bag of pairwise dis-

tances:
{V2,v2,2,4/10,+/10, 4}.

Fortunately, such counter-examples are extremely rare because they
must satisfy a polynomial equation, as stated in the following theo-
rem.

Theorem 1. [6] There exists a polynomial f in 2n variables such
that if the points p1,p2, - .., pn € R? satisfy f (p1,p2,...,0n) #
0, then for any other point-set p1, Pz, - . . , Pn having the same bag of
distances as that of p1, p2, - . ., Dn, there exists an orthogonal matrix
M € R**2, q translation vector T € R? and a permutation ™ € Sy,
such that

Di = Mpruy + T, foralli=1,...,n.
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Fig. 1. Dissimilar shapes can have a similar bag of distances. The
star symbols in a) and b) represent two exceptional point-sets which
have a very different shape but exactly the same bag of distances.
Any pair of point-sets similar to these two exceptional ones, such as
the ones graphed with the dot symbols in a) and b), respectively, will
have similar bag of distances. One thousand such pairs were ran-
domly generated and their bag of distances were compared with the
Kolmogorov-Smirnov goodness of fit test to obtain the probability
that these distance samples come from the same underlying distribu-
tion. In ¢) and d), we display a histogram of the results when com-
paring the exceptional point-set of a) with the one nearby, and with
the one close to the exceptional point-set of b), respectively. One can
see that such a test poorly discriminates between similar/dissimilar
shapes when these happen to lie near an exceptional pair of shapes.

The point-sets which do not lie on the zero set of the polynomial
f are called generic point-sets. What the above theorem says is that
generic point-sets do not share their bag of distances with any other
point-set, unless this point-set also has the same shape.

Numerical experiments were conducted in [6] to estimate the
likelihood of encountering a non-generic point-set when choosing
the points on a fixed grid. Although it was observed that non-generic
point sets are potentially quite likely hit on a small grid, the results
of the experiments suggest that they are almost never encountered
when the points are chosen randomly, up to 15 digit precision, on a
unit square of dimension one with a uniform distribution. The bag
of distances thus appears to be a very good representation for the
shape of a point-set, even when the points coordinates are specified
by floating point values.

It would be tempting to try to show that bags of distances that
are close, in some sense, come from point-sets which have a similar
shape. Unfortunately, it is not true, even if we try to restrict the state-
ment to generic point-sets. This is because of the presence of those
counter-examples. Indeed, one can pick a generic point-set which is
close to Point-set 1 and another generic point-set which is close to
point-set 2 (as in Figure 1 a) and b)). Obviously, these generic point-
sets would have quite different shapes, but, by construction, their bag
of distances would be very similar. We thus need to follow another
route to generalize the bag of distance representation method to the
case of points observed under noisy conditions. The route we plan
to follow is based on the result presented in this paper.

3. A FAITHFUL SHAPE REPRESENTATION FOR 2D
GAUSSIAN MIXTURES

We consider the case where the points observed are drawn from a
Gaussian mixture. In order to determine the likelihood that the un-
derlying objects have the same shape, the question that one needs
to answer is: “Given two sets of points, each drawn from a Gaus-
sian mixture, what is the probability that they come from the same
Gaussian mixture, up to a rigid transformation?”. In this section, we
show that asking this question is equivalent to asking: ”What is the
probability that their pairwise distances come from the same distri-
bution?”.

Let p(x) be a Gaussian mixture model for a random variable
z € R?,

n

p(x) = Zaipi(:c) =3 -
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Now let p,, p2 be two random variables chosen independently
at random according to p(z). Denote by A the square of the distance
between these two points,

A =|p1 —p2|*.

Let us denote the pdf of A by r(A). We call r(A) the distribution of
distances of the Gaussian mixture p(x). Since the distance between
two points is invariant under a simultaneous rigid transformation of
the two points, the distribution of distances of two Gaussian mixtures
which have the same shape must be the same. We now show that, for
generic Gaussian mixtures, the converse statement also holds. More
precisely, we prove the following theorem.

Theorem 2. Suppose that two Gaussian Mixtures p(z), p(x) are
such that their respective means forms a generic point-set. Then
p(x) and p(x) have the same distribution of distances, r(x) = 7(x),
if and only if they have the same shape, i.e. if and only if there exists
an orthogonal matrix M € R**? and a translation vector T € R?
such that

p(x) = p(Mz +T).

In other words, the distribution of distances is a faithful repre-
sentation of the shape of generic Gaussian mixtures.

Proof. The moment generating function for A is
E (etAi)
_ tlz1—z2
= e p(x1)p(x2)dr1das,
r2 JR2
n ) 7‘1 2
= 2 aio‘j/ / =2l g (1) p; (w2) dwrdaa,
r2 JR2

i,j=1

M;(t)

= D o My(t),

i,7=1

where M;j(t) is the moment generating function for the distribution
of the square of the distance between two random variables drawn
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independently from p; (z) and p; (x), respectively. After integrating,
we find

_ - |Ei + E]" «
T 1= 2 2 2 2\ _ 442 (3. )
1—2t(o7,; +03; +0f;+03;) — 4[5 + 3]
i —nj 12 e+262 = )T (Z455) (ni—nj)
1—21,({7%,1.4-”%1.+aij+a§_j)—4f,2|>:i+zj‘

Mi; (1)

e

One thus sees that M;;(¢) is a function defined by four parameters:

H/’Ll - /’Lj||27
Uii + Ug,i + Jij + US,J’?

(i = p13) " (S + 55) (i — 15,
|5 + 5]

By power series expansion, one can show that functions having the

same form as the functions M;;(t) are linearly independent from

each other, unless the values of their four parameters are the same.
Now consider two Gaussian mixtures, say

n

pla) = > aipi(@) and pla) = 3 (@),

i=1

where p;(x) and p;(z) are Gaussian distributions with parameters
(ui, ;) and (fi;, ), respectively. Assume that pq, iz, - - -, fun are
distinct and that they form a generic point-set in R?. If the distri-
bution of distances of these Gaussian mixtures are the same, then
their moment generating functions are the same. By linear indepen-
dence, this means that the set of quadruples of parameters involved in
the moment generating function for the first distribution, along with
their coefficient cv; v, is the same as the set of quadruples of param-
eters and coefficients &;&; for the second distribution. In particular,
their set of pairwise distances is the same. By Theorem 1, and since
Ui, ..., Un is assumed to be a generic point-set, this means that there
exists a rigid transformation mapping the point-set 11, . . . , tn, to the
point-set fi1, . .., fin. SO, after a relabeling of the components of the
second mixture, we can write

a0 = QiQ (3)
i — pj| = i — Ryl “

2 2 2 2
01+ 02, +01;+03;=

_2 _2 _2 _2
01 +02;+01,;+025, (5

(i — 1) " (B +25) (i — py) =
(i — )" (S0 +55) (s — 1), (6)
1%+ 5] = |8 + 5, @)

forall 4,5 = 1,...,n. We can actually assume, after a rigid trans-
formation of the second Gaussian mixture, that

wi = i, foralli =1,... n.
By solving the resulting system of Equations, we obtain
5, foralli=1,...,n,

o =G, N =

and thus the Gaussian mixtures p(z) and 5(x) are the same, after a
rigid transformation. O
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Fig. 2. In general, the Kolmogorov-Smirnov test does not ac-
curately distinguish the underlying distributions of the samples
contained in the bag of pairwise distances. Several pairs of con-
figurations of five points were randomly generated, such as the ones
illustrated with the star symbols in a) and b) respectively. Then,a
point-sets similar to the first point-set was randomly generated, as
illustrated with the dot symbols in a). The distance samples con-
tained in the bag of distances were compared using the Kolmogorov-
Smirnov goodness of fit test to estimate the probability that these dis-
tance samples come from the same underlying distribution. Plot c)
contains a histogram of the results obtained when comparing the two
nearby point sets, and d), a histogram of the results when comparing
the random pair. Here we see that this method poorly discriminates
between similar/dissimilar shapes in general.

4. TOWARDS A GOODNESS OF FIT TEST FOR DISTANCE
SAMPLES

Now that we know that the distribution of distances can be used to
faithfully represent the shape of a Gaussian mixture, the next step in
this research will be to figure out how to determine the probability
that two sets of distance samples come from the same underlying
distribution. More particularly, we are interested in the case where
we are given n point samples, each coming from a distinct Gaussian
of the Gaussian mixture, and in using their pairwise distances to de-
termine the probability that the Gaussian mixtures are the same up
to a rigid transformation.

One method that has been used to attack this problem consists
in comparing the pairwise distance samples using the Kolmogorov-
Smirnov goodness of fit test, or another measure of similarity. As
pointed out in Section 2, because of the existence of exceptional
counterexamples to Theorem 1, such an approach cannot accurately
distinguish between different shapes.

The following simple set of numerical experiments should con-
vey this fact in an unequivocal manner. We generated one thou-
sand slight variations of the exceptional Point-set 1 and one thou-
sand slight variations of its exceptional counterpart, Point-set 2. The
variations were randomly generated by sampling points within a uni-
formly distributed square region around each point. The size of the
region used was 0.05, thus the resulting point-sets were extremely
close to each other. Using the Kolmogorov-Smirnov goodness of fit
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test, we compared the variations of Point-set 1 with Point-set 1 itself.
More precisely, we computed the probability that the distance sam-
ples contained in the bags of distances of the variations of Point-set 1
come from the same distribution as those of Point-set 1. A histogram
of the results is plotted in Figure 1 ¢). The same method was used to
compare the shape of Point-set 1 with that of the variations of Point-
set 2. A histogram of the results is plotted in Figure 1 d). As one can
see, it is impossible to distinguish which histogram corresponds to
similar shapes, and which one corresponds to dissimilar ones.

To illustrate the fact that what happened in the above experiment
is a generalized problem, we carried out a second set of numeri-
cal experiments where point-configurations were randomly gener-
ated and compared. For each experiment, we generated three dis-
tinct point-sets: two randomly generated configuration of 5 points
(assumed to have a different shape) together with one small pertur-
bation of the first randomly generated point-set (yielding a similar
shape). An example is illustrated in Figure 2 a) b). The bag of dis-
tances of the two nearby configurations were compared using the
Kolmogorov-Smirnov test. The same was done for the two point-
sets with different shapes. This experiment was repeated one thou-
sand times. A histogram of the results is plotted in Figure 2 ¢) and
d) respectively. The second histogram shows a very high number of
false matches and thus this method fails at accurately distinguishing
shapes. One main reason for this is that the Kolmogorov-Smirnov
test is meant to be used on independent samples, which is not the
case when one uses all the pairwise distances of a point set. More-
over, the Kolmogorov-Smirnov test is a limit result, so it may or may
not give an accurate solution when using merely a finite number of
samples. In future work, we shall show how to address these issues.

5. CONCLUSION

We have shown that the shape of a generic Gaussian mixture can
be represented without any loss by the distribution of the square
of the distance between two points independently drawn from this
Gaussian mixture. By generic, we mean that the means of the Gaus-
sian mixture should not form an exceptional point-set as defined by
Boutin and Kemper in [1]. This means that comparing two Gaus-
sian mixtures up to a rigid transformation (i.e. a rotation, translation
and reflection) is, in most cases, equivalent to comparing their un-
derlying distribution of distances. The motivating application of this
work is the problem of recognizing the shape of objects represented
by points. We have shown that using the pairwise distances between
the points as distance samples and comparing these distance sam-
ples using the Kolmogorov-Smirnov goodness of fit test is not a reli-
able way to identify similar shapes. In future work, we will develop
a more effective statistical test to estimate the probability that two
given point-sets have the same shape.
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