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ABSTRACT

Fusion of images in the presence of noise is a challenging
problem. Conventional fusion methods focus on aggregating
prominent image features, which usually result in noise en-
hancement. To address this problem, we developed a wavelet-
based, noise-aware fusion method that distinguishes signal
and noise coefficients on-the-fly and fuses them with weighted
averaging and majority voting respectively. Our method re-
tains coefficients that reconstruct salient features, whereas noise
components are discarded. The performance is evaluated in
terms of noise removal and feature retention. The compar-
isons with five state-of-the-art fusion methods and a combi-
nation with denoising method demonstrated that our method
significantly outperformed the existing techniques with noisy
inputs.

Index Terms— Image Fusion, Wavelet Transforms, Noise

1. INTRODUCTION

Image fusion integrates multiple images to improve quality
for tasks such as visualization, segmentation, object identi-
fication, etc. Fusion approaches described in the literature
focus on maximizing the feature preservation ([1, 2, 3] and
references therein). During image acquisition and data trans-
formation, noise is unavoidable and is usually intensified at
many stages. Fusing noisy images usually results in heavily
distorted composites. Conventionally, noise removal meth-
ods are employed, which, however, introduces the problem of
suppressing valuable features.

To address this issue, noise-aware fusion methods have
been developed. Burt and Kolczynski [4] used selection and
averaging rules to merge Laplacian coefficients with signif-
icant difference and high similarity, respectively. Alterna-
tively, Pavel et al. [5] developed a method to integrate syn-
thetic templates (noise-free) with real sensor images. The fu-
sion was achieved with the weighted sum of the two accord-
ing to the local variability in the Laplacian pyramid subbands.
More often, in conjunction with multi-resolution-based fu-
sion methods, consistency verification is used. It is a method
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to overcome isolated noise and coefficient selection artifacts
and assumes the coefficient selection integrity within a lo-
cal neighborhood [3]. In these methods, a universal, pre-
selected threshold was used for fusion. Recognizing that the
amount of noise present in images varies, we developed an
adaptive method to combine image features according to the
noise strength in the wavelet subbands.

Inspired by the success of wavelet shrinkage [6, 7], we
developed a wavelet-based, noise-aware fusion method that
classifies wavelet coefficients on-the-fly and fuses the signal
coefficients by minimizing the mean square error. The noise
coefficients, on the other hand, are suppressed to zero to avoid
distortion unless an agreement is found in all corresponding
subbands.

The rest of this article is organized as follows: Section 2
describes our fusion method in detail. Section 3 presents
the experimental results from both feature retaining and noise
suppression aspects. Section 4 gives the concluding remarks
and future work.

2. WAVELET-BASED NOISE-AWARE FUSION

In wavelet-based image fusion approaches, source images are
transformed into the wavelet domain, where discontinuity fea-
tures are separated from the background information. The
combination strategy then selects appropriate coefficients and
produces a fused set of wavelet subbands. In the presence
of noise, wavelet subbands consist of a mixture of signal and
noise coefficients. Distinguishing these two types of coeffi-
cients is critical for an effective fusion method to preserve
image features and avoid integrating noise.

In wavelet shrinkage-based noise removal, a carefully cho-
sen threshold, denoted by A, separates signal and noise coef-
ficients [6, 7].

I(N) = {Is(x,y)} U {In(z,9)}

where I denotes a wavelet subband. I(z,y) are the coef-
ficients greater than the threshold A. These coefficients are
essentially signal coefficients that encode prominent image
features. Due to their large magnitude, they are less likely to
be altered by noise. That is, noise can change only a small
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portion of the magnitude of a signal coefficient. I,,(z,y) are
the coefficients less than \. If there is no noise imposed to
the image, these coefficients are mostly zeros or very close to
zero. The presence of noise causes their values to depart from
nil. Based on the above model, we can design fusing strate-
gies to combine signal and noise coefficients. The details of
our method are described in the following three sections.

2.1. Fusion of Signal Coefficients

When fusing signal coefficients, we need to maximize the im-
age feature retention while minimizing the error covariance.
Let J denote the coefficients in the fused subband and I de-
note the input subbands. The fusion result is achieved with
the following equation:

J = arg mJinE[(I — NI - )] ?2)

where E[-] denotes the expectation. Assume the fused sub-
band is the weighted sum of the inputs

K
J = Z .1 3)
k=1

where K is the number of source images. The estimation
error is orthogonal to the observed subband, hence, we have

E[(J-oNI") =0 )

where .J and I are the demeaned subbands. By expanding the
expectation and combining with Equation 3, the fused sub-
band J is computed as follows:

jzzcjfkcf;lfkjk (@)
k

where C'5 7, and C 7.7, are the covariances. Assume that noise
has zero mean and variance o2 , and is independent of .J.
The fusion rule becomes the combination of the observed sub-
bands according to the subband variance, a?k, and the noise
variance, which is normalized:

2 2
0. — Un,k
J = E k72]k (6)
K 71,

2.2. Fusion of Noise Coefficients

Noise coefficients are suppressed to zero unless there is an
agreement on the existence of a feature. That is, if coeffi-
cients from input subbands are consistent with little variance,
we then take the average of these coefficients; otherwise, sup-
pression is applied.

Let 7, 7 € [0,1], be a threshold. A set of coefficients,
denoted by &, is selected and the set size is expressed as 7K.
In our method, variance is used as the consistency metric,

TK
CE) = 3 Y i)~ Twp)? )

where I(z,y) is the mean of set &,. The coefficients are con-
sistent upon satisfying the following two criteria.

72>0.5 ®)
C&r)<e 9

where e is chosen manually.

Assume 7 = 0.5 and we have a consistent set of coeffi-
cients £,. The median value of £, can be proven to be one of
the consistent coefficients. The consistency evaluation starts
with the median value and iteratively recruits the coefficients
from I1(x,y), Ia(z,y), ..., Ix(x,y) that have the least ef-
fect on the current mean of the subset. The recruitment is
constrained by the above criteria and terminates once Eq. 9
becomes invalid. The presence of a consistent subset is deter-
mined by Eq. 8. The fusion of noise coefficients is as follows:

One issue of the coefficient classification is the coexis-
tence of signal and noise coefficients at the same subband lo-
cation (z,y). Such classification disagreement typically oc-
curs in two cases. (1) noise strength is variant, and (2) com-
plementary features are in the input images. When the dis-
agreement occurs, the coefficient in the fused composite is
determined solely on signal coefficients, whereas noise coef-
ficients are neglected.

consistent £, exists

otherwise (10)

2.3. Noise Estimation and Threshold Selection

In our method, accurate subband noise estimation is a critical
step. To estimate the subband noise strength, Donoho [6] used
the following empirical formula that employs a median fil-
ter of the high-high subband on the first decomposition level,
HH,.

. Median(|H H,|)

on T T 06745
This method is insensitive to outliers of high magnitude but
gives only a rough estimation.

In [8], subband noise was estimated by finding the maxi-
mum in the local coefficient variance function. For each co-
efficient, a window was used to estimate the local variance,
and a histogram of the local variance is computed for every
subband. The noise variance is chosen to be the peak in this
histogram. This estimation tends to underestimate the noise
variance in the case where the image has very few edges.

Yuan and Buckles [9] developed a method to overcome
the bias caused by sample size. This method takes advantage
of the sparsity property of the wavelet subband. The idea is
to identify the coefficients that were distorted away from zero
and calculate the variance, which closely approximates the
noise distribution if the following two conditions are satisfied:
1) The noise variance is much greater than that of the under-
lying clean coefficients used for variance computation, 2) The
number of such coefficients is statistically large enough.
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The noise estimation is achieved by computing subband
variance as a function of magnitude threshold, denoted by v,
and identifying the inflection point of its first derivative

vV = arg max 60825/) (11)
Hence, the noise variance is estimated as follows:
A pa— ENj(I ~1)? (12)
" N-1

Given the noise variance, the optimal threshold can be de-
termined by minimizing the risk function

A= argm/\inE(IAs()\) —1,)? (13)

where I is the denoised result. The closed form solution de-
rived with numerical method is as follows [7]:

0,2

2()
A= W 14
T o2() (4

Table 1. SNR of fusion results. Noise STD=25.
Test Case 1 11 III v

Input 1 -0.6 5.8 34 5.4
Input 2 2.1 4 33 2
WNAF 113 11.6 143 10.2

WDS 105 94 125 9

WDR 9.6 8.8 121 85
WF 1.9 6.7 52 4

PCA 2 9.1 89 7.1
LapF 35 64 5 4.3
CPF 0.3 6.8 45 4.1
GPF 24 6.7 56 42

3. EXPERIMENTS AND DISCUSSIONS

We evaluated our method from two aspects: noise suppres-
sion and feature preservation. References were created by
fusing the clean images and noisy inputs were also created
from the same clean images by adding Gaussian noise. We
applied Wiener denoising method to images before and after
the fusion process.

Figure 1 illustrates results of fusing remote sensing im-
ages. The noise standard deviation (STD) in this experiment
was 25. Given the noisy inputs, Figure 1(a) and (b), a con-
ventional wavelet-based fusion' resulted in a more distorted
outcome, Figure 1(c). Figure 1(d) and (e) are the results
produced with the same wavelet-based fusion method, and
Wiener denoising was applied to the source images and the
fusion result respectively. The noise was dampened but fine

!n this wavelet-based fusion, we applied select-max to all the high-pass
subbands and average to the low-pass subband.

features were removed as well as some artificial edges were
generated. The result of our method is shown in (f), which
clearly shows the improvement in noise removal. Also, the
fine features became recognizable.

Fig. 1. Fusion of multi-spectral imagery. (a), (b): noisy inputs. (c)-
(f): fusion results with conventional wavelet-based method, wavelet-
based method with denoised inputs, wavelet-based method with de-
noised result, and our method.

Quantitative noise suppression was evaluated with signal-
to-noise ratio (SNR). Table 1 lists the average SNR over five
trials with our method (WNAF), wavelet-based fusion with
denoised source images (WDS), wavelet-based fusion with
denoised fusion result (WDR), wavelet fusion (WF), PCA-
based fusion (PCA), Laplacian-based fusion (LapF), contrast
pyramid-based fusion (CPF), and Gaussian pyramid-based fu-
sion (GPF). Without denoising, conventional methods resulted
in poor SNR performance. In many cases, e.g., case I with
CPF, PCA, and WF, the fusion results had even smaller SNRs
than the inputs. Our method outperformed others as shown in
the table with best SNRs high-lighted.

To evaluate feature retaining performance, we used the
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Table 2. False Negative Ratio of the fusion results given various noise STDs.

Noise STD=15 Noise STD=25 Noise STD=35

Test Case | 1 I III v 1 1I 111 v 1 11 11T v

WNAF 0149 1120 .1421 .0738 | .0152 .1370 .1843 .0860 | .0187 .1555 .2321 .0915
WDS 0242 1942 4911 .1530 | .0386 .2030 .5376  .1593 | .0337 .2122 .5671 .1603
WDR .0314 2102 .5203 .1585 | .0385 .2201 .5641 .1667 | .0430 .2274 5739 .1677
WF .0195 .1095 2608 .0697 | .0275 .1486 .3294 .0881 | .0328 .1714 .3656 .0984
PCA 0422 1148 3356 .0825 | .0445 .1472 3759 .0933 | .0464 .1669 .3965 .1003
LapF 0179 .1064 2262 .0638 | .0261 .1430 .2922 .0828 | .0321 .1662 .3408 .0938
CPF .0445 1159 2221 .0664 | .0487 .1507 2854 .0866 | .0511 .1730 .3319 .0974
GPF .0294 1307 .3271 .0859 | .0349 .1650 3730 .0998 | .0396 .1860 .4034 .1073

multi-resolution False Negative Ratio (FNR):

> W —y)

p*—1h; >0
Do

where 1* and ¢ are the binary edge map reconstructed from
wavelet subbands of reference image and fusion result, where
edge pixels are marked with 1, and O elsewhere. It measures
the diminished image features in the fused image. Smaller
FNR value represents better feature retaining performance.
Tables 2 lists the average FNR results over five trials with
best results high-lighted. The same test images were used but
three noise STDs were evaluated. Our method gave the best
feature preservation performance in nine our of twelve cases.
In the three cases, its average FNRs were very close to the
best. The combination of fusion and denoising obviously is
less effective at recovering image features, which is also il-
lustrated in Figure 1(d) and (e). The results were blurry in
smooth regions or regions that contain fine details.

FNR =

15)

4. CONCLUSION

In this paper, we described a wavelet-based, noise-aware im-
age fusion method to address the problem of fusing noisy in-
puts. Our method distinguishes signal and noise coefficients
in wavelet subbands on-the-fly by computing the noise vari-
ance for every subband. Due to the nature of signal coeffi-
cients, they are fused with weighted averaging to maximize
the feature retention. For noise coefficients, we avoid inte-
gration by keeping possible features that are supported by all
input instances. Our method was evaluated from feature re-
tention and noise removal aspects and experimental results
demonstrated that our method greatly improved the fusion
performance in the presence of noise.

With very low noise or fine texture that resembles noise,
our method may perform less optimally. We believe this is a
problem that originates from noise estimation. To overcome
this problem, Gaussianity of subband histograms can be eval-
uated. If the distribution is super-Gaussian, i.e. little or no
noise presence, a conventional method can be used. Other-
wise, a noise-aware method is applied.
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