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ABSTRACT

We present a classification-based method to identify objects
of interest, and judge their depth in a single image. Our ap-
proach is motivated by a postulate of human depth perception
that people can give a credible depth estimation for an ob-
ject whose familiar size is known, even without using stereo
vision. To emulate the mechanism, we categorize objects
into the same class if they have similar sizes and shapes, and
model the sense of discovering a familiar object by applying
multiple kernel logistic regression to the conditional probabil-
ity of feature types. The depth of a detected target can then
be obtained by referencing its corresponding object category.
Overall, the proposed algorithm is efficient in both the train-
ing and testing phases, and does not require a large amount of
training images for good performances.

Index Terms— Machine vision, object detection, pattern
classification, feature extraction

1. INTRODUCTION

We investigate the problem of finding objects and estimating
their depth from a single image. Previous studies have sug-
gested that although humans heavily rely on stereo vision to
construct the 3-D structures of the real world, we can estimate
very well the depths in a scene based on only monocular infor-
mation [1]. This is quite evident because when people look at
a picture, which contains only 2-D information, we could still
“perceive” the 3-D geometric information present in the im-
age. The ability is mostly owing to our abundant knowledge
about things we have observed and have been learning. In this
work, we shall specifically consider the following monocular
(or pictorial) cues, including familiar size, relative size, and
occlusion. Examples to illustrate the usefulness of relative
size as a depth cue are shown in Figure 1.

Approaches to depth estimation mainly focus on directly
analyzing stereo vision information for computing disparities
and depths, or using other cues such as optical flow or blur for
depth-from-motion or depth-from-defocus. Methods of this
kind can derive accurate estimations, but require two or more
images for computing the cues. In many vision applications,
a coarse depth estimation often provides already quite useful
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Fig. 1. Relative size between familiar objects is a useful cue to
depth. For objects of similar sizes, those that appear smaller
in an image should be further away from the camera.

information. It is therefore constructive to explore the pos-
sibility for having an efficient and reliable way of approxi-
mating the object depths from a single image. Torralba and
Oliva [2] show that the absolute depth information can be re-
covered from the image structure cue. They report impres-
sive results on computing the mean depth of a given scene.
However, without resolving the difficulties of segmentation
and object recognition, their method can not make the most
of the typical size information of familiar objects. Michels
et al. [3] also find depths from single monocular images, and
use the depth estimations in a real-time system. Hoiem et al.
[4] instead focus on estimating the geometric properties of
a scene by learning region-based appearance models of geo-
metric classes, including sky, ground, and vertical.

Our method finds balance between the effectiveness and
the complexity of a learning scheme. We first establish a li-
brary of image templates, corresponding to familiar objects of
different categories (assuming their depth values are known
in advance). To detect objects of interest and estimate their
depth in a given image, we adopt the multiple kernel logistic
regression (MKLR) [5], [6], [7] to model the multiclass prob-
abilities of salient features, namely the SIFT descriptors, e.g.,
[8], [9] . Kernel logistic regression has been well studied in
statistics and machine learning [7], [10], and its related tech-
niques have been shown to yield comparable performance to
SVMs. Performing MKLR on an interest point would yield
a hypothesis of detecting a familiar object, and its depth can
be estimated from the library. The final outcome can then be
derived by validating and grouping these hypotheses.
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2. LEARNING OBJECTS OF MULTIPLE CLASSES

Suppose we have an image set containing C' categories of ob-
ject templates. Each image is cropped to roughly enclose an
object of interest such that those in the same category are
depicted with a similar image size. For the ease of imple-
mentation, we use the last category to include all background
templates, even though they do not contain specific objects
and neither do they have similar scales. We run SIFT on
all templates to detect interest points {f;}}¥., and compute
the corresponding descriptors {x;}¥ ;, where N is the to-
tal number of interest points extracted from all the templates.
Note that we also keep a mapping (i) to indicate that in-
terest point ¢ comes from template ¢. As usual, a descriptor
x; is a 128-dimensional vector encoding the local gradient
orientations. And each interest point f; is represented by a
four-dimensional vector consisting of the location, scale, and
orientation. By labeling each feature descriptor with the cat-
egory of the template from which the feature is extracted, we
have D = {(x;,¥;)|¢ = 1,..., N} as training samples, where
x; is the feature vector and y; € {1,...,C} is its label.

With MKLR, we are to learn from the training samples the
conditional probability P(y|x). Thus, given a detected inter-
est point, we can use its feature descriptor to predict the label
by referencing P(y|x). After predicting the labels of all the
interest points in a test image, we combine the predictions to
identify possible locations of familiar objects and their scales
in the current image.

2.1. Multiple kernel logistic regression

Given the training data D, the conditional probabilities for
predicting the category label are parameterized by the C' la-
tent real-valued functions {h°(x)}<_, of MKLR based on the
multiple logistic likelihood:

P 0 e 1
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where
he(x) = > afK(x,%;) + be )

consists of the kernel expansions, and € denotes the set of
parameters «of and b.. One way to learn the parameters is to
directly maximize the likelihood in (1). However, the scheme
usually leads to overfitting such that the learned conditional
probabilities may not generalize well. We consider a more
robust MKLR model by adding to (2) the following regular-
ization terms

> afalK (xi,x;) 3)
4,J

to penalize kernel functions of high complexity. The task of
learning 6 can now be formulated as a maximum a posteriori
(MAP) approximation, and solved by optimization techniques

[6]. Indeed MKLR can be a very efficient learning scheme.
In Seeger’s implementation [6], the incomplete Cholesky de-
composition is used for the low-rank approximation of the
kernel matrix such that the time complexity of optimization
becomes linear in the number of training samples.

3. DETECTING FAMILIAR OBJECTS AND DEPTHS

In general running SIFT on a hundred templates is sufficient
to give an ample amount of feature vectors for training, say
10,000 features. We do not perform vector quantization or
clustering on the feature vectors to obtain visual words, e.g.,
[9], [11]. Instead, we use all the feature vectors to gener-
ate the training samples for MKLR. This would give rise to
a large training set D = {(x;,y;) i =1,..., N} with N ~
10,000. Nonetheless, since we apply low rank approxima-
tion to the kernel matrix, learning the MKLR parameters is
still fast and feasible—be reminded that the time and memory
requirements for training are linear to V.

3.1. Making hypotheses on familiar objects

Given a new test image, we shall generate hypotheses about
all possible locations and scales of the familiar objects that
may appear in the scene. This can be efficiently done by car-
rying out the following steps.

Step 1. Detect interest points from a given image, and
then use MKLR to predict each feature vector’s label. Since
the remaining procedure is universal, it suffices to simply look
at how an interest point is processed. Consider now some
interest point f and its feature vector X. We compute the
conditional probability P(g|x) and predict the label as ¢ if
P(§ = c|x) has the largest value.

Step 2. Use the kernel expansions to make hypotheses on
the location and the relative size of an object. Based on the
predicted label ¢, we find the index ¢* such that

1" = argmax afK°(X,x;), 4)
(2

and then pick the corresponding interest point f;« in the train-
ing samples. (If the label y;« of f;« is not ¢, which is very
unlikely, we drop this interest point and go on processing the
remaining interest points.) The rationale behind looking into
the kernel expansions for generating hypotheses is that for
MKLR every feature vector in D has certain influence over
the conditional probabilities of labels. We naturally choose
the one exerting the strongest influence to the making of a
label prediction.

Step 3. Recall that each interest point f; keeps the infor-
mation of its location, scale (¢;), and orientation. We compute
the scale ratio 6/0;~ between f and f;-. Because we know
that f;» comes from the template ¢(¢*), this ratio provides the
relative size of the target to the template. According to the
ratio and the relative location of f; in the template ¢(i*), we
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can determine a bounding box in the test image to enclose a
possible familiar object having the interest point f. Therefore,
the image patch within the bounding box is considered simi-
lar to the one present in #(i*), and f gives us a hypothesis on
the location and relative size of the object in the test image.

3.2. Speeding up MKLR with cover trees

So far we have discussed how hypotheses about familiar ob-
jects are made by performing MKLR over interest points,
and realized that the kernel expansions play an important role
in determining the conditional probabilities on labels. Typi-
cally, the learned coefficients of in an MKLR model are all
nonzero. It follows that to make a single prediction in MKLR,
one needs to compute all the terms of the kernel expansions,
and therefore the complexity is linear to N. Concerning this
computational cost, Zhu and Hastie [7] propose a forward se-
lection algorithm to find a subset of training samples such that
the submodel can approximate well the full model. However,
we prefer not to throw away the feature vectors because they
are extracted from only a small number of templates and the
SIFT descriptors are generally quite informative.

Still the MKLR classification can be further speeded up.
By re-examining the kernel expansions ) . af K°(x, x;), one
observes that it should be harmless to skip the calculations
of those K (x,x;) that are close to zero. In our implementa-
tion we use a fast approximation scheme suggested in Shen
et al. [12] to accelerate the testing. Specifically, we build the
cover tree structure [13] to store the training samples for fast
finding nearest neighbors. Since the RBF kernels are used in
our MKLR, we only need to find the %k nearest neighbors of a
test vector, and then compute the kernel expansions involving
these k feature vectors. Using the cover tree approximation,
the cost of making a single prediction becomes log-linear to
the sample size N.

3.3. Fusing comparable hypotheses

To integrate the hypotheses for locating the objects and for
obtaining the depth estimations, we consider a simple fusion
estimator via kernel smoothing and mode seeking. For each
object class, we apply (fixed-bandwidth) kernel smoothing to
each component of the hypotheses, i.e., the location, width,
height, and the scale ratio. We then find the significant modes
as the estimations for these components. Prior knowledge and
heuristics such as overlapping, impossible size, or restricted
area can also be used to remove strong but biased hypothe-
ses. Examples of fusing hypotheses about spotting familiar
objects are provided in Figure 4.

4. EXPERIMENTAL RESULTS

We test our method on two collections of images: snapshots
taken by a SONY AIBO and image sequences captured on

Fig. 2. AIBO. The images include four familiar objects (will
be referred according to this left-to-right order) to AIBO, and
two indoor background patches. All templates of object ¢ are
assumed to be taken at a distance k; away from the camera.

Fig. 3. Highway. Three categories of vehicles being the set of
familiar objects, as well as some outdoor background patches.

the highway. In the first experiment (4/BO), we have 12 tem-
plates of four objects in three views, and another 12 templates
used as backgrounds. Some of the templates are shown in
Figure 2. The distance between AIBO and each object is kept
fixed during capturing the templates. From these 24 templates
we extract 1, 540 interest points, and hence a training set with
N =1, 540 feature vectors and C' = 5 different labels. In the
second experiment (Highway) we have 53 templates of vehi-
cles of various sizes. We categorize the vehicles into three
types according to the typical sizes, see Figure 3 for exam-
ple. We also collect 65 background templates, and in total we
generate 8,293 feature vectors as training samples from the
vehicle and background templates. The proposed framework
is used to train an MKLR model for each of the two experi-
ments. We then apply the MKLR models to new images, and
the results are shown in Figure 4. Note that the depths listed in
the depth maps are estimated as the inverse scale ratio (o;+ /)
multiplying the constant k;, which pertains to the distance be-
tween the camera and the object when the template is taken.
About the running time (with Matlab 7), our framework is
very efficient. Training the MKLR model for the A/BO exper-
iment takes only 1.4 seconds, and for Highway 12.7 seconds.
We use cover trees for finding the 20 nearest neighbors. The
testing time for estimating the object depths in a single image
(of size ~ 400 x 300) is about 0.12 seconds for the 4/BO
sequence and 0.6 seconds for the Highway sequence.
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Fig. 4. Each column depicts the results of testing on a single image, including the original image, the one highlighted with
hypotheses (dots of various colors are interest points), after hypothesis grouping, and with the estimated depth information.
We use bounding boxes of different colors to distinguish different familiar objects. The depth value is displayed as 0 x k;
where [ is the inverse scale ratio discussed in Section 3.1, and k; is the template distance to the camera as in Figure 2. So,
e.g., 0.813k, in AIBO 2 implies Tigger is 0.813 times closer to the camera than the case for its corresponding template.
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