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ABSTRACT 

 

We present an optimized full scale automatic camera 
calibration approach which is both accurate and simple to 
implement. The method can be applied to a wide range of 
cameras equipped with normal, wide-angle, fish-eye, and 
telephoto lenses. The procedure does not require prior 
knowledge of any parameters. The method uses a simple 
planar calibration pattern which is observed from different 
positions. Closed-form estimates for the intrinsic and 
extrinsic parameters are computed followed by nonlinear 
optimization. A polynomial function describes the lens 
projection instead of the commonly used radial model. 
Statistical information criteria are used to automatically 
determine the complexity of the lens distortion model. The 
proposed complete calibration method is shown to obtain 
lower reprojection error than some commonly used methods 
while maintaining a low complexity distortion model.  
 

Index Terms— Calibration, Distortion, Lenses 
 

1. INTRODUCTION 
 

A large number of camera models and procedures are 
available today to calibrate a camera but the challenge is in 
choosing both a model which provides accurate results and 
a procedure which is simple. The assumptions and 
constraints in many of these methods place limitations on 
having a complete and universal calibration method. The 
most popular calibration methods take several images of a 
known calibration object from different camera positions. 
The projection of calibration object’s features onto the 
image sensor is approximated with the pinhole camera 
model. The deviation of features from the pinhole camera is 
modeled with radial and tangential distortions [1,2]. Most 
such methods either require prior knowledge, namely the 
focal length, or are restricted to normal cameras with 
perspective projections. As a result these methods can not 
be used on cameras where prior knowledge of some 
parameters is not known or on camera systems which are 
equipped with wide-angle or fish-eye lenses. Such camera 
lenses exhibit significant amount of lens distortion which 
must be given special consideration.  

Much research has been made in the area of distortion 
calibration on wide-angle and fish-eye lenses [3,4]. Many of 
these methods use calibration patterns to fix the distortion 

[4,5] while other nonmetric methods depend on the presence 
of certain features in the scene [3]. The limitation with these 
methods is that they are concerned with only correcting the 
distortion while leaving the rest of the camera parameters to 
be estimated with other methods.  

Even with all of the proposed distortion calibration 
methods, few address the issues of a generic distortion 
model [4] which can work on a wide range of cameras or 
consider distortion model complexity selection [3,7]. All 
together the methods which focus on complete generic 
calibration for wide range of cameras are few.  

In this paper, we present a unified framework for a full 
scale camera calibration technique which addresses a 
number of shortcomings of previous methods. The result is 
a complete generic calibration procedure with automatic 
distortion model selection which can be applied to normal, 
telephoto, wide-angle, and fish-eye lenses. We propose to 
use a closed form solution to estimate the intrinsic and 
extrinsic parameters and refine the values using an 
optimization step with bundle adjustment. To be able to 
model distortion on a wide range of lenses we use the lens 
projection polynomial model with statistical model 
complexity selection. We apply our method on both 
synthetic and real data captured using a wide range of 
camera lenses.  
 

2. INTRINSIC AND EXTRINSIC CALIBRATION 
 

In a pinhole camera, a point in space T,, zyxM  is 

projected onto the image plane to image point T,vum  
so the ray from M  to m  passes through the camera center 
C . Points M  and m  are related by the projection 

tRKP | , where R  is a 33  rotation matrix, t  a 13  
translation vector, and K  the intrinsic calibration matrix. 
The intrinsic parameters include the focal length f , aspect 
ratio , skew s , and principal point 00 ,vu . We will 

denote the homogenous representation of M  and m  as M̂  
and m̂  respectively. 

 

2.1. Homography Estimation 
By using a planar calibration grid, the projection matrix 
reduces to a 2D to 2D mapping. Several techniques exist to 
estimate the homography H  expressed as: 
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MHm ˆ~ˆ  with trrKH 21 . (1)
Normalized direct linear transformation (NDLT), followed 
by nonlinear optimization is used to compute H  [2,8]. 
 

2.2. The Closed-form Solution 
The image of the absolute conic 1-TKK  and the 
homography H  relating a model plane in the world 
coordinate system to its image places two constraints on the 
intrinsic parameters [2]. Since 1r  and 2r  are orthonormal, 
using trrKH 21  we obtain our two constraints 
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T
1 hhhh  and 02

T
1 hh . Given homography 

H  we may write HHT . Writing  in terms of 
00 ,,,, vus  gives a symmetric matrix that may be 

defined by a 6D vector T
332313221211 ,,,,,ˆ .  

Writing the thi  column of H  as 1 2 3( , , )i i i ih h hh  we 
obtain 
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Combining the constraints as a homogenous system gives 
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If we have n  images of the model plane, then stacking 
equation (3) makes V  a 62n  matrix with a unique 
solution when 3n . Once we have  we can make various 
substitutions to solve for ,,,,, 00 vus  with  being 
the scale factor.  

Once the intrinsic parameters have been solved for, the 
extrinsic parameters are computed as: 
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(4)

with 2
1

1
1 11 hKhK . Because of noise in the data, 

the rotation matrix will not necessarily satisfy all the 
properties of a rotation matrix. The best rotation matrix R  
approximating a given matrix Q  under the Frobenius norm 
is the one that minimizes Fmin QRR . The solution is 

then VUR T  with TUSVQ  being the singular value 
decomposition. 

 
3. SOLVING FOR DISTORTION  

 
To be able to apply the calibration method to an entire 
spectrum of lenses from telephoto to fisheye we use lens 
projection model rather than the commonly used radial 
distortion model. This results in a decreased error and 
complexity of the overall approach as compared to 
modeling radial distortion. Standard cameras are built to 
follow a perspective projection. However, perspective 
projection has an asymptote at 180° FOV which makes it 
extremely difficult to build a rectilinear lens above 100° 

FOV. Other types of projections have been proposed [9] to 
overcome the limitation and are listed in Table 1. 
 

 Table 1: Types of lens projections 
 Name Formula 

1 Perspective tanfr  

2 Stereographic 2tan2 fr  

3 Equisolid 2sin2 fr  

4 Orthogonal sinfr  
 

 

In practice, real cameras do not exactly follow the 
projections in Table 1. A polynomial is used to approximate 
the real lens projection in the form: 

3
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p

i

i
i . (5)

Once a solution has been computed for the calibration 
matrix, rotation matrix and translation vector, a least-
squares solution to p  lens projection coefficients 

T
21 ,, p  is computed.  

In optical systems the centers of lens elements are not 
strictly collinear and are subject to various amounts of 
decentering distortion [1]. This distortion has both radial 
and tangential components and can be modeled  as: 
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 (6)

with q  decentering coefficients q,, 21 . Since 
decentering distortion is usually small, initial estimates are 
set to zero and then later optimized with other parameters. 

 
4. FINAL PARAMETER OPTIMIZATION 

 
Once the close-from solutions to the camera parameters are 
computed, including the distortion coefficients, the results 
are refined using maximum likelihood estimation (MLE). 
From our experiments, as the lens projection deviates from 
the perspective projection, alternating between refining 

tRK ,,   and ,  produces significantly better results.  
Levenberg-Marquardt algorithm is used to perform MLE. 
 

5. DISTORTION MODEL SELECTION 
 
Distortion model selection is the task of choosing the best 
model for a given system when several competing models 
can represent the distortion. Even though any model can be 
incorporated into the algorithm introduced above, the use of 
the most fitting and concise model will provide both better 
accuracy and reduced computational complexity. In most 
cases the model with more degrees of freedom will fit the 
data closer than other less complex models but higher order 
terms in the polynomial radial distortion model may cause 
numerical instability [1,2]. To help with stability and since 
higher order terms are comparatively insignificant in some 
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systems, the number of distortion coefficients are kept low 
when modeling standard cameras [1,8] but higher order 
terms may be necessary when modeling wide-angle lenses.  

The goal is to develop an automatic model selection 
criterion based on a quantitative measure which will select 
the model with a reduced number of coefficients without 
sacrificing accuracy. Akaike laid the foundation for 
statistical model selection by introducing the information 
theoretic criterion (AIC) [12]. In AIC, the model selected is 
the one that minimizes the error of a new observation. It has 
the form  

kL i 2;log2AIC m , (7)
where qpk  is the number of parameters in the model 
and iL m;  is the likelihood of the model parameters 

tRK ,,,,  given observations im . The model with 
the lowest AIC score is selected. The first term in equation 
(7) is a measure of the goodness of fit of the model, and the 
second term penalizes higher complex models. 

The sum-square-error (SSE) is computed as 

i
ir
2SSE  with iiir mm  the difference between 

the measured and estimated image points. Assuming the 
noise in the data is Gaussian distributed, the probability of 

im  given the model  is the product of the individual 
probability density functions (PDFs) of each point, 
assuming the errors on all points are independent. The PDF 
of the noise perturbed data is given by 

22 2
22

1|Pr ir

i
i em , (8)

where 2  is the variance of noise. The log-likelihood of the 
model parameters  given the observations im  is then: 
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The maximum log-likelihood estimate (MLE) is the set of 
parameters  that maximizes iL m;log . We observe that 
minimizing the SSE is equivalent to maximizing the log-
likelihood, which is in-turn equivalent to maximizing the 
likelihood of the model parameters . Therefore, by 
substituting equation (9) into equation (7) and simplifying, 
we can write AIC in the following form: 

kr
i

i 21AIC 2
2

. (10)

We use the formulation in [10] to calculate the variance 
2 of unknown Gaussian noise: 

kNr
i

i
ˆ22 , (11)

where N  is the number of samples and k̂  is the number of 
coefficients of the most complex competing model. In 
summary, using the proposed distortion model, a variety of 

pq  distortion models are fit to the data. Then one of the 
criterions listed in Table 2 is used to select the distortion 
model. The selection of which criterion to used should be 
determined by the application, data size, noise, and model 
library [10].  
 

Table 2: Model selection criterions  
Name Formula 

AIC [11] kL i 2;log2 m  

MDL [12] NkL i log21;log2 m  

BIC [13] NkL i log2;log2 m  

SSD [12] 1log2242log;log2 kNkL im  

CAIC [14] 1log;log2 NkL im  

 
6. EXPERIMENTAL RESULTS 

 

6.1. Distortion model selection 
To test the performance of the proposed model selection we 
generated synthetic data consisting of 8 images. Each 
800x600 image contained sixty four control points and was 
transformed with varying rotations and translations. 
Distortion was applied to the data with a fixed number of 
radial and tangential coefficients. Model selection was 
performed between 12 competing distortion model 
complexities. The distortion models range from simplest 
model with no distortion to the most complex model with 5 
coefficients to model radial distortion and 2 coefficients to 
model tangential distortion. Results show that the model 
selection can successfully select the same model complexity 
as the model complexity used to generate the synthetic data. 

To test the robustness of model complexity selection 
we generated synthetic data with varying noise levels of 
Gaussian distribution with zero mean and standard 
deviation, , ranging from zero to 1.2 pixels. The 
simulation was repeated 250 times at various noise levels. 
Since we did not see a significant dependence on noise we 
summarized the results for the tested criterions in Table 3. 
Results with synthetic data, which were generated to 
simulate real data, verify the correct model complexity 
selection with the tested criterions. 

 

Table 3: Model Complexity Selection Accuracy  

MODEL CRITERIONS AIC MDL BIC SSD CAIC

% Accuracy 94.8% 98.0% 99.6% 99.2% 99.2%
 

6.2. Complete calibration with real data 
We applied our calibration algorithm with distortion model 
selection to five cameras: (1) 210mm Nikon Vari-focal 
Lens, (2) PULNiX CCD camera with 6mm lens [2], (3) 
IQEye3 with a FUJINON 1.4-3.1 mm lens set to wide angle, 
and a Nikon fisheye FC-E8 lens set to two different zoom 
settings to produce a (4) full frame fisheye (FOV of 180° 
across the diagonal) and (5) circular fisheye (FOV of 180° 
in all directions). Table 4  and figure 1 show the results with 

VI - 399



the mean-square-error (MSE) for the different cameras 
comparing the approach using the proposed lens projection 
with decentering distortion (LPDD) model and the 
traditional radial distortion with decentering distortion 
(RDDD) model. Figure 2 shows the complexities as selected 
by the MDL criterion. MDL was chosen over other 
criterions because it always selected a complexity less than 
or equal to other criterions without significantly sacrificing 
the error. The algorithm was modified for the verifocal 
telephoto lens data to use the zoom of expansion as the 
initialization value for the principal point. 
 

Table 4: MSE error with RDDD and LPDD models. 

 (1) 
Telephoto 

(2) 
Normal 

(3) 
Wide angle 

(4) 
Full frame

(5) 
Fisheye

RDDD 0.4446 0.0287 1.3790 2.3857 8.1422 
LPDD 0.4597 0.0298 0.9520 0.6639 0.9405 
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Fig. 1. Graph of the mean-square-error (MSE) from Table 4 for 

different cameras with LPDD and RDDD distortion models. 
 

Zhang achieved a root-mean-square (RMS) error on his 
publicly available dataset of 0.335, where he only modeled 
radial distortion with two coefficients [2]. This corresponds 
to an MSE of approximately 0.1122. Our LPDD method 
achieved an MSE of 0.0298 using the same number of 
coefficients. The RDDD method also achieved a lower MSE 
than Zhang at the expense of two extra coefficients for 
decentering distortion, as selected by MDL.  
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Fig. 2. Graph of the model complexity for the different cameras 

with LPDD and RDDD distortion models. 
 

In all the experiments, the LPDD method outperformed 
the RDDD method except for normal and tele-photo lens, 

but were lower only by a small margin. We can clearly see 
in Figure 1 the exponential increase of the MSE for RDDD 
as the camera approaches a circular fisheye whereas the 
MSE for LPDD is small and stable for all cameras. Also, the 
complexity of the model is always less than or equal to that 
of RDDD shown in Figure 2.  

 
6. CONCLUSIONS 

 

We have presented a complete automatic camera calibration 
technique for use with a large spectrum of cameras. To 
model distortion, lens projection polynomial and 
decentering distortion are incorporated in the overall unified 
framework. A number of information criteria were shown to 
be successful in automatically selecting the complexity of 
the camera distortion model. Results show the advantage of 
using the LPDD model and the superior performance of our 
method on a wide range of cameras, varying from telephoto 
to fisheye. 
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