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ABSTRACT

In this paper, we propose an empirical Bayesian approach to-
ward video modeling and demonstrate its application in multiframe
image restoration. Based on our previous work on spatio-temporall
adaptive localized learning (STALL), we introduce a new concept
of spatio-temporal resampling to facilitate the task of video mod-
eling. Resampling produces a redundant representation of video
signals with distributed spatio-temporal characteristics. When com-
bined with STALL model, we show how to probabilistically com-
bine the linear regression results of resampled video signals under a
Bayesian framework. Such empirical Bayesian approach opens the
door to develop a whole new class of video processing algorithms
without explicit motion estimation or segmentation. The potential of
our distributed video model is justified by considering its application
into two multiframe image restoration tasks: repair damaged blocks
and remove impulse noise.

Index Terms— Video signal processing, Bayes procedures, Statis-
tics

1. INTRODUCTION

Motion plays a fundamental role in mathematical modeling of video
signals. Despite that motion estimation has been extensively studied
in the literature of signal processing and computer vision, uncer-
tainty with motion representation and algorithms for extracting mo-
tion information from video signals remains poorly understood. As
articulated in [1], deterministic representation of motion information
by optical flow or motion vector field is the source of difficulty. In re-
cent years, statistical modeling of video signals without explicit mo-
tion estimation have received increasingly more attention. Both non-
parametric models (e.g., patch-based [2], [3]) and parametric mod-
els (e.g., STALL [4]) have been proposed and achieved promising
results for low-level vision tasks.

To overcome the high dimensionality of video, locality assump-
tion is often made - in patch-based models, 3D patches are localized
in space and time; in our STALL model, training window used by
Least-Square regression is also localized. Despite the convenience
of such locality assumption, its validity remains questionable espe-
cially when video contains fast camera or object motion. Due to
limited temporal sampling rate (typically less than 30Hz), any point
along the motion trajectory could be easily located outside a 3D win-
dow of limited size. One possible solution to overcome the above
difficulty is via spatio-temporal (ST) adaptation or layered represen-
tation [5] - i.e., adaptively choose patch shape or training window
to match the local motion characteristics. However, such adapta-
tion strategy inevitably involves motion segmentation, another noto-
riously challenging problem.
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In this paper, we present an empirical Bayesian approach to-
ward adaptive modeling of video without explicit motion segmen-
tation. Motivated by the fundamental tradeoff between space and
time, we introduce new ST resampling techniques in Section 2 to
obtain a redundant representation of video signals. ST resampling is
implemented by warping the video sequence in a reversible fashion
[6]. Each resampled sequence can be viewed as a redundant version
of the original but acquired by a different virtual camera. By the
analogy between sample and population, our ST resampling aims at
facilitating the modeling task by offering a computational alterna-
tive to acquiring more samples by exploiting the relativity of motion
(e.g., a moving object would appear still to a camera moving at the
same speed).

ST resampling gives rise to distributed or redundant representa-
tion of video signals. While modeling the array of virtual cameras
by a discrete random variable, we can show how to probabilistically
combine the statistical inference results from the distributed repre-
sentation under a Bayesian framework in Section 3. Such Bayesian
fusion offers a clean solution to ST adaptation and avoids the un-
known impact of the uncertainty with layered representation. By
combining localized STALL and Bayesian fusion, we show how
to exploit ST dependency in multi-frame image restoration without
explicit motion estimation or segmentation. Significant gain over
STALL-based schemes has been achieved for the class of complex
video sequences containing camera motion as we will show in Sec-
tion 4.

2. EMPIRICAL BAYES MODELING VIA
SPATIO-TEMPORAL RESAMPLING

Locality or Markovian assumption is often made when modeling
high-dimensional signals such as video. Our previous work on STALL

model [4] can be viewed as a localized version of previous ST-autoregressive

(STAR) model [7]. For completeness, we will briefly review the
STALL model to motivate the introduction of ST resampling. Like
STAR, we consider a linear regression model

N
X (7o) = > arX (iix) + e(iio) (1)

k=1
where N = {#;}}L, denotes the ST neighbors of 7o. However,
unlike STAR which estimates model parameters globally, STALL
updates AR coefficients @ on a pixel-by-pixel basis by solving a local

LS optimization problem

@ = argmin||fvx1 — Cauxnanxi||® 2)
a
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Fig. 1. An example of spatio-temporal resampling: vertical axis de-
notes y direction (d; = 0).

where ¥, C' denote local training window M and ST neighborhood
N of each pixel in M respectively. The effectiveness of STALL
largely depends on the choices of A" and M. When both A/ and
M are fixed, STALL can only handle the class of video containing
slow motion. Although adaptive selection of A/ and M by layered
representation [5] is conceptually appealing, layer decomposition or
motion segmentation remains difficult especially in the presence of
complex motion.

An alternative solution to achieve ST adaptation is to realize the
fundamental tradeoff between space and time - specifically motion
is a relative concept. Human perception of motion arises from the
spatial displacement of the same physical point with respect to the
camera. Therefore, a moving object might appear still if the camera
is moving in parallel to the object at the same speed. Such observa-
tion motivates us to introduce a class of ST resampling techniques
for video modeling. Based on the analogy between sample and pop-
ulation, we propose to obtain spatio-temporally resampled signal by
“reversibly” transforming the original video into another perceptu-
ally meaningful one. For example, temporal reversing is a valid re-
sampling operation (reversed signal is physically infeasible but per-
ceptually convincing); while temporal shuffling usually destroys the
motion continuity and is arguably not a valid resampling operation.

In this work, we consider the class of resampling via spatio-
temporally warping as shown in Fig.1. Specifically, the n-th frame is
shifted by [(n—1)dg, (n—1)d,] (dz, dy are integers). Note that such
warping is readily reversible since no interpolation is involved [6].
The impact of warping can be intuitively understood by referring to
Fig. 1 - when the warping parameter matches the speed of a moving
object, a slant trajectory could be transformed into a straight one
(therefore better fit the STALL model with fixed M and N). The
warped video can also be viewed as the “new” sample acquired by
a virtual camera which records the same set of intensity values but
in a different ordering. Note that the above resampling strategy does
not affect the motion continuity and therefore the warped video is
still perceptually meaningful (ignoring boundary artifacts).

Resampling produces a redundant or distributed representation
for video signals. To manage the computational complexity, we
make some assumption about the high-level knowledge about video
such as camera motion type (e.g., panning vs. zoom), which is often
available from video segmentation [8] or can be estimated from the
phase-correlation function. Such high-level information is useful to
the selection of resampling parameters. For instance, we can choose
a 1D virtual camera array in the presence of horizonal camera pan-
ning and a 2D array in the case of camera zoom. Fig. 2 shows the
temporal slices [8] of the original and resampled video for garden
- it can be clearly seen that the fast panning tree in the original se-

quence virtually moves slower and slower as the warping parameter
d, increases (d; = 0).

Fig. 2. Example of spatio-temporal resampling applied to garden
sequence containing horizontal camera panning.

Such observation with the relativity of motion is at the heart of
our video modeling approach. It suggests an alternative approach of
achieving adaptation by soft fusion instead of hard decision as in
layered representation. Note that even when a cubic training win-
dow is used, ST adaptation can be achieved by resampling because
the shape of training window varies from one resampled video to
another. Apparently, we might choose the optimal training window
(virtual camera) for a pixel, which assigns a deterministic label to
each pixel (the layer index). Such strategy can be shown equivalent
to a maximum-likelihood (ML) approach of making hard decisions
for every pixel. Next, we will show how to softly combine the re-
gression results from distributed virtual cameras under a Bayesian
framework.

3. BAYESIAN FUSION OF LINEAR REGRESSION
RESULTS

To simplify the notation, we drop 3D coordinated 7 from X (77) and
use (X1, X2,..., Xk) to denote the regression result by applying
STALL to the K resampled sequences [9] respectively. Here virtual
camera index k = 1, ..., K is modeled by a discrete random variable
reflecting our uncertainty about inferring X (clean and complete ob-
servation) from the k-th resampled sequence of X (noisy or incom-
plete observation). Using Bayesian modeling averaging technique
[10], we can have

P(X[X) =D p(X|X, Xx)p(Xk|X), 3)

k=1

Multiplying both sides by X and taking summations, we obtain the
Bayesian LS estimation by

K
E[X|X] =) arXy “)
k=1
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where linear weight o, = P(X|X) denotes the posterior model
probability of inferring X from the k-th resampled sequence (note
that E[X' | X, Xx] = Xi). According to Bayesian rule, the weight-
ing coefficients can be calculated by

P(X|X%)P(Xk)
S, P(X|X:)P(X,)

where P(X}) is the prior probability and P(X | X}) is the likelihood
function of observing X in the k-th resampled sequence. Based on
STALL [4], we can model likelihood term P(X|X}) by a Gaussian
probability function of regression error ey,

2
€k
202

P(X|Xt) = Plex) o cap(5 k) ©)
where ey, is the regression error of the k-th camera as defined in Eq.
(1) and o2 is a constant determined by heuristics (we use a? = 500).
If we use a uniform prior for convenience, Eq. (5) can be simplified
into
2
exp(5.%)
2

Zf:l ea:p(?e;)

It is easy to see that a smaller regression error leads to a larger
weighting coefficient in the Bayesian fusion model Eq.(5), which
matches our intuition that oz, should reflect the confidence about the
inference result from the k-th resampled sequence. Intuitively, as
long as the array of virtual cameras is sufficiently large, any segment
of a slant motion trajectory is likely to be warped to the straight po-
sition (aligned with the cubic training window) in some resampled
sequence. Upon the alignment, localized regression by STALL will
produce the smallest errors and therefore make the largest contri-
bution during Bayesian fusion. When compared with hard-decision
based layer representations, our distributed model systematically pools
together the inference results from the virtual camera array and avoids
the penalty of the uncertainty with any suboptimal labeling process.

ar = P(Xi|X) = (7

4. EXPERIMENTAL RESULTS

In this section, We show that the modeling capability of STALL
model can be dramatically improved by spatio-temporal resampling
and Baysian fusion especially for complex video sequences contain-
ing camera motion. Four test sequences are used in our experi-
ments: two containing fast camera panning (SIF-garden and CIF-
bus) and two containing camera zoom (SIF-tennis and CIF-mobile).
For camera panning sequences, we use a 1 x 9 horizontal virtual
camera array (d, = 0); for camera zoom sequences, we use a 3 X
3 virtual camera array. Due to space limitation, we will only re-
port our experimental results in two applications related to multi-
frame restoration here - error concealment and impulse noise re-
moval. The MATLAB demo program can be accessed at http:
//www.csee.wvu.edu/~xinl/demo/MALSTAR.html.

eVideo Error Concealment
Error concealment refers to the problem of repairing damaged blocks
in block-based video communication systems. The block loss is as-
sumed to occur at the same spatial location but for three consecu-
tive frames (3rd-5th frames). Such consecutive block loss is partic-
ularly challenging for video containing camera motion because con-
tent contained in the damaged blocks varies from frame to frame.
After specifying an appropriately chosen scanning order (3D exten-
sion of the rules suggested by [11]), we can sequentially recover the

Fig. 3. Top-left: original; top-right: damaged; bottom-left: con-
cealed result without fusion (PSNR= 27.32d B); bottom-right: con-
cealed result with fusion (PSNR= 30.51dB)

missing data by LS-based ST interpolation. The same model sup-
port and training window parameters of STALL model as [12] are
used. For CIF-mobile sequence, a 2D 3 x 3 camera array is used;
for SIF-garden sequence, the 9-point camera array is chosen to be
(0,—-2), ..., (0, 6) (camera panning direction is towards the right in
this sequence).

Table 1 shows the comparison results of average PSNR across
three frames without and with Bayesian fusion. Dramatic gain can
be observed especially for the sequences with fast camera panning.
Figs. 3 and 4 include the comparison among 100 x 100 portions of
the original, damaged, concealed 3rd frames by STALL of garden
and mobile sequences without and with Bayesian fusion. The im-
provements on visual quality are also convincing - e.g., most artifacts
around occluded areas are suppressed after Bayesian fusion. This is
because larger weights are assigned to virtual cameras with smaller
regression errors. Again we note that such ST adaptation is achieved
without any explicit segmentation.

Error Concealment | Denoising {10% impulse)

w0 W w0 W
Garden 25,93 31.87 32,14 35.54
Bus 28.34 34.20 33.19 36.55
W abile 2777 31.64 33.52 3713
Tennis 32.54 34.45 37.90 389,93

Table 1. PSNR (dB) performance comparison between STALL-
based error concealment and impulse noise removal algorithms (w/o
- without fusion, w - with fusion).

eVideo Impulse noise removal
We consider the impulse removal problem where video data is con-
taminated by random-valued impulses uniformly distributed between
[0,255]. Similar to [3], we assume the known noisy pixel location
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Fig. 4. Top-left: original; top-right: damaged; bottom-left: con-
cealed result without fusion (PSNR= 29.07d B); bottom-right: con-
cealed result with fusion (PSNR= 34.10dB)

and focus our comparison on different filtering strategies. Note that
explicit ME is difficult for noisy video especially when the amount
of impulse noise is high (to the best of our knowledge, most exist-
ing works on impulse noise removal deal with still images instead of
video). Preliminary denoising results without Bayesian fusion have
been reported in [4]. Table 1 also includes the PSNR performance
comparison for impulse noise removal without and with Bayesian
fusion. Again we have observed dramatic improvement (> 2dB)
brought by the proposed fusion scheme. Fig. 5 contains the subjec-
tive quality comparison of denoising results for the bus sequence.
‘We have also found our approach significantly outperforms epitome-
based approach [3] on both subjective and objective qualities.

5. CONCLUSION

In this paper, we further improve the modeling capability of STALL
model by an empirical Bayes approach based on ST resampling and
probabilistic fusion. ST resampling is implemented by virtual cam-
eras which warp a video sequence in a reversible fashion. Bayesian
fusion probabilistically pool together the statistical inference results
from resampled video signals (distributed virtual cameras). When
combined with our previous STALL model, the empirical Bayes ap-
proach offers a new framework for distributed processing of video
signals without explicit motion estimation or segmentation. Highly
encouraging experimental results with multiframe image restoration
have been reported to support the effectiveness of this new model.
Our model also has potential applications into deinterlacing, tempo-
ral interpolation and super-resolution.

6. REFERENCES

[1] E. Simoncelli, Distributed Representation and Analysis of Vi-
sual Motion, Ph.D. thesis, MIT, Jan 1993.

Fig. 5. Top-left: original frame; Top-right: noisy frame (10% im-
pulse noise); Bottom-left: denoised result by STALL without fusion
(PSNR= 31.54dB); Bottom-right: denoised result by STALL with
fusion (PSNR= 35.01dB)

[2] Y. Wexler, E. Shechtman, and M. Irani, “Space-Time Video
Completion,” in Proc. IEEE Conf. Computer Vision and Pat-
tern Recognition, 2004.

3

—_—

V. Cheung, B. J. Frey, and N. Jojic, “Video epitomes,” in Proc.
IEEE Conf. Computer Vision and Pattern Recognition, 2005.

[4] Yunfei Zheng and Xin Li, “Video modeling via spatio-
temporal adaptive localized learning (stall),” in 40th Asilomar
Conference on Signals, Systems, and Computers, 2006.

[5] J.Y.A. Wang and E.H. Adelson, “Representing moving images
with layers,” IEEE Transactions on Image Proc., vol. 3, no. 5,
pp. 625-638, September 1994.

[6] D. Taubman and A. Zakhor, “Multi-rate 3d subband coding of
video,” IEEE Transactions on Image Processing, vol. 3, pp.
572-588, 1994.

[71 M. Szummer and R.W. Picard, “Temporal texture modeling,”
in Proc. of Int. Conf. on Image Proc., 1996, pp. 65-70.

[8] Chong-Wah Ngo, Ting-Chuen Pong, and Hong-Jiang Zhang,
“Motion analysis and segmentation through spatio-temporal
slices processing,” IEEE Transactions on Image Processing,
vol. 12, pp. 341 — 355, 2003.

[9] B. Efron and R.J. Tibshirani, An Introduction to the Bootstrap,
CRC Press, 1994.

[10] Jennifer A. Hoeting, David Madigan, Adrian E. Raftery, and
Chris T. Volinsky, “Bayesian Model Averaging: A Tutorial,”
Statistical Science, vol. 14, pp. 382-401, 1999.

[11] A. Criminisi, P. Perez, and K. Toyama, “Region filling and
object removal by exemplar-based image inpainting,” [EEE
Transactions on Image Processing, vol. 13, no. 9, pp. 1200—
1212, September 2004.

[12] Y. Zheng, X. Li, and C. Dai, “Video error concealment based
on implicit motion models,” in SPIE Conf. on Multimedia Sys-
tems and Applications VIII, 2005.

VI - 408



