
Optimal Pruning Quad-Tree Block-Based Binary Shape Coding 

Zhenliang Shen, Michael Frater, John Arnold 

School of ITEE, University College,
The University of New South Wales, Australia 

ABSTRACT

In object-based video coding, shape masks are used to 
specify the shape of a video object. The binary shape means 
each pixel is either background or object. In this paper, we 
present a new lossless block-based coding algorithm for 
binary shapes that combines a quad-tree structure with 
block-based arithmetic coding; an optimal pruning quad-
tree structure searching algorithm is proposed to further 
reduce the spatial redundancy of quad-tree blocks. 
Experimental results demonstrate that this new approach 
provides a saving in bits generated between approximately 
40-75% compared to the MPEG-4 binary shape coding 
algorithm.

Index Terms—Quad-Tree, CAE, adaptive arithmetic coding

1. INTRODUCTION 

In object-based video coding, foreground video objects are 
separated from the background and coded independently, 
such as MPEG-4 [1]. The video objects have three types of 
information: are texture, shape, and motion. The texture has 
the YUV components. The shape information associated 
with a video object takes the form of a mask specifying the 
transparency of each pixel. The shape mask could be either 
greyscale or binary. We are concerned only with binary 
shape mask in this paper. The term of “binary shape” is 
used to describe shape masks where each pixel is either 
completely inside the object or completely outside it, i.e. 
there is no blending of pixels at object boundaries. There 
are two major classes of technology for the compression of 
binary shape masks: contour-based coding and bitmap-
based coding. In contour-based methods, the boundary 
information of the closed contour enclosing the object is 
used to represent the shape information. These methods 
include chain coding [2] and vertex-based coding [3]. 
Bitmap-based methods encode the source binary image 
directly. These include modified-read (MR) coding [4], 
context-based arithmetic encoding (CAE) [5], and Quad-
Tree coding [6]. 

Some recent works on binary shape coding are as follows. 
The skeleton-based method decouples the shape information 

into two independent signal data sets: the skeleton and the 
boundary distance from the skeleton [7]. A new contour-
based algorithm provides improved coding efficiency to 
reduce the redundancy of Differential Chain Coding (DCC) 
[8]. In [6], quad-tree based coding with block compensation 
is used, with the bitstream size reduced by allowing some 
small distortion of the shape mask. A new technique based 
on a local analysis of the digital straightness of the causal 
part of the object boundary (DSLSC) has been suggested 
[9]. MEPG-4 uses CAE as its binary shape coding because 
of its coding efficiency and the feasibility of hardware 
implementation [5]. In this paper, we propose a lossless 
block-based coding scheme for binary shape masks, based 
on optimal pruning of a quad-tree coding in conjunction 
with context-based arithmetic coding. The rest of the paper 
is organized as follows. The quad-tree block-based coding 
method is presented in Section 2. The optimal pruning 
quad-tree structure searching is introduced in Section 3. 
Finally, experimental results and conclusion are presented in 
Sections 4 and 5.

2. Quad-Tree Block-Based Binary Shape Coding

In MPEG-4 binary shape coding, a binary shape mask is 
broken up into blocks of 16x16 pixel, known as binary 
alpha blocks (BAB). These BABs are encoded in the same 
raster scan order as motion and texture data. Each BAB is 
identified as either transparent, opaque or boundary. For 
boundary blocks, each pixel of blocks is coded using a 
context-based arithmetic coder [10]. The context-based 
arithmetic coder encodes the probability table based on a 
context number, where the context number is generated 
from a template of the surrounding pixels. In the new 
technique proposed in this paper, we use a quad-tree 
decomposition in which each boundary block is split into 
four equal-size sub-blocks. Each of these 8x8 pixel sub-
blocks, is then identified as being transparent, opaque, or 
boundary. This process is repeated as many times as is 
required. Figure 1 illustrates the quad-tree structure in a 
16x16 block. In the quad-tree structure, a three-symbol 
system (‘0’, ‘1’, and ‘B’) is instead of the original binary 
pixels. The quad-tree structure of the 16x16 block in Figure 
1 can be expressed in the following sequence: 

VI - 4371-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007



The order of the quad-tree sequence is from the top to the 
bottom layer. The larger the font size, the larger the block 
is, i.e. the higher the layer containing the larger block. For 
each 16x16 boundary block, MPEG-4 codes each pixel; 
hence there are 256 coding units, each of which takes one of 
two values (‘0’, ‘1’). In the quad-tree structure, the 256-
pixel block is reconstructed by using 37 quad-tree units, 
each of which takes of one of three values (‘0’, ‘1’, ‘B’). In 
our quad-tree coding scheme, in fact, the coding order is not 
same as the above quad-tree sequence. Each frame has to be 
coded five times, which is coded from larger size block to 
small size block separately. (See Figure 2) For each block of 
different layer, it is coded by using context-based arithmetic 
encoder [10].  

              16x16 block     8x8 block

4x4 block     2x2 block 

                                     Original image 

The efficiency of CAE is highly dependent on the choice of 
the template. In general, the more pixels in the template, the 

more accurate the probability distribution of the coded pixel 
is, leading to improved coding performance. Moreover, in 
templates of the same size, the higher the correlation 
between the pixels in the template and the pixel being 
coded, the more accurate the context probability table is and 
the less spatial redundancy the coded pixels have. A 
limitation on the choice of the pixels to form the template is 
that they must be decoded before the current pixel. In 
MPEG-4, only the pixels in top and left of the current 
coding pixel can be chosen in its template because of the 
raster scan coding order. The coding efficiency of CAE 
should be better if the information of the bottom and right of 
the current coding pixel can be used in the template. In 
quad-tree block-based coding, since the difference size 
blocks are coded separately, the block information of the 
larger size is known for the coding block in current layer. 
Therefore, blocks from the upper layer can be used in the 
template, even where they lie to the right or below the 
current block, while blocks from the current layer can only 
be used if they precede it in the blocks scan order. In our 
scheme, considering the distribution of the blocks, four 
different templates are designed for each of the four sub-
blocks of the boundary block. Figure 3 shows these intra 
templates in any layers except the 16x16 layer (we use the 
same template as MPEG-4 in this layer). B1, B2, B3, and 
B4 are used to denote the four blocks in the current layer, 
which are the sub-blocks of a boundary block of upper 
layer. C1, C2, C3, and C4 are blocks whose value is known 
to the decoder in upper layer but not in the current layer. 
C5-C9 are blocks that have already been coded in the 
current layer, and whose values are therefore known to the 
decoder. For inter coding, four similar templates are created 
by adding information from the previous frame. The 
information of upper layer is of lower resolution than the 
current block, but it still includes important information that 
has a significant impact on coding efficiency. Because the 
blocks in Quad-Tree structure have three values, the size (c)
of the context number can be expressed as ,
where k is the number of blocks in the template. 

B

0 0 0 B

B B B 1

0 0 0 B 0 0 B 1

0 0 0 1 0 1 1 1 

B 1 B 1

0 1 1 1 0 1 1 1

16*

8*8

4*4

2*2

1*1

k
k

kcC 3

3. Optimal Pruning Quad-Tree Block-Based Adaptive 
Arithmetic Coding 

Figure-1 (a) Transparent, opaque, and boundary blocks in 16-
by-by block. (b) Quad-Tree values in the hierarchical structure 

Figure-3 Intra templates of Quad-Tree block-based coding
with different sub-blocks (B1, B2, B3, and B4 are sub-blocks
to be coded, C1-C4 are blocks from upper layer, C5-C9 are 
blocks having been coded in current layer.) 

(a) (b)

Figure-2 Different layers in the quad-tree structure (black 
indicates background, grey indicates the object, and the 
white is the boundary blocks. 

VI - 438



In Figure 1, the expression of quad-tree structure can 
significant reduce the spatial redundancy in a 16x16-pixel 
block because there are many homogenous sub-blocks. 
However, the quad-tree structure only works well in the 
simple boundary block. For some complicated boundary 
blocks, the quad-tree structure does not have the same 
efficiency as in the Figure 1, and can be even worse than 
coding each pixel directly. For example, Figure-4 (a) is a 
16x16 block with complicated boundary information. This 
quad-tree structure has 1 block in 16x16 layer, 4 blocks in 
8x8 layer, 16 blocks in 4x4 layer, 64 blocks in 2x2 layer, 
and 140 pixels in 1x1 layer, which means it needs 268 bits 
to store this quad-tree structure (Each quad-tree block has 3 
symbols which value is 1.5 bits/block and pixel is binary). 
Thus, the total numbers of bits are larger than required for a 
simple bit map with one bit per pixel. For some blocks, the 
quad-tree structure expression could be efficient in the 
16x16 layer; but not for all the sub-blocks. This could be 
demonstrated in the Figure 3 (b). In this block, there is 1 
block in 16x16 layer, 4 blocks in 8x8 layer, 8 blocks in 4x4 
layers, 20 blocks in 2x2 layer, and 60 pixels in 1x1 layer, 
which needs 110 bits and is more efficient comparing to 
code each pixel directly. However, these four 8x8 sub-
blocks have totally different quad-tree expressions. The top 
two 8x8 sub-blocks are not boundary blocks so they do not 
have to be split further. Analyzing the quad-tree structure of 
bottom left 8x8 sub-block, there are 4 blocks in 4x4 layer, 4 
blocks in 2x2 layer, and 4 pixels in 1x1 layer, which need 
16 bits. It is very efficient comparing to use the pixel 
expression directly. For the bottom right 8x8 sub-block, 
however, there are 4 blocks in 4x4 layer, 16 blocks in 2x2 
layer, and 56 pixels in 1x1 layer, which needs 86 bits. In 
comparison of 64 binary pixels in this 8x8 sub-block, the 
quad-tree structure is inefficient. If the quad-tree structure is 
applied in the 16x16 layer and two top and bottom left sub-
blocks, and the bottom right sub-block is coded pixel 
directly, the new mixed structure have 16 blocks and 68 
pixels. In here, each block has four states, which they are all 
‘0’, all ‘1’, blocks with quad-tree (‘Bq’), and blocks without 
quad-tree (‘Bp’) (The value is 2 bits/block in here). Hence, 
it needs 100 bits for the new mixed structure and saves 10 
bits in comparison of previous quad-tree. Depending on the 
complexity of the boundary information, the sub-blocks 
within different layers have an optimal expression by using 
either quad-tree structure or pixels.  

We are inspired by the work of leaf merging by [11, 12], 
which analyses the sub-optimal rate-distortion properties of 
quad-tree in the case of geometric image modeling. In this 
paper, since the binary shape coding is lossless, we use the 
minimum block and pixel entropy searching in each quad-
tree layer based on context-based adaptive arithmetic coding 
to rectify the initial quad-tree structure. The entropy of each 
block and pixel is counted based on their context-based 
probability: 

)(log*)( 2 contextpcontextpEntropy nn  (1) 

where  is the estimated probability distribution 

of block or pixel in value ‘n’ with the particular context 
number, it can be taken as 

)(contextnp

ccontextN
kcontextnpcontextN

contextnp
)(

)(*)()(  (2) 

N(context) denotes the count of coded pixel in that context 
number. ‘k’ and ‘c’ are constant (‘k’ and ‘c’ are set 1 in this 
paper) [10]. 

The optimal pruning quad-tree structure searching is to 
count the entropy of block and pixel from 4x4 layer to the 
larger layer. In 4x4 layer, the total entropy of quad-tree 
structure in particular layer is compared to the total entropy 
of 16 pixels in the same layer. If the block entropy is 
smaller than the pixel entropy, the quad-tree structure is 
used in this layer; otherwise, the pixel is coded directly in 
this layer. The minimum entropy of each 4x4 block is stored 
to measure in the 8x8 layer. This searching algorithm will 
be stopped at the 16x16 layer. The new quad-tree structure 
in the Figure-4 (b) can be express as the follow. (After the 
Bp block, all pixels in this block have to be coded.) 

4. Experimental Results 

Results comparing the performance of the new binary shape 
coding method against MPEG-4 are presented in this 
section. Tests were carried out using shape masks associated 
with five standard video test sequences. For each shape 
mask, the alpha values between 0 and 255 were converted to 
binary by thresholding. Background noise, located away 
from the object of interest, was also removed. The even 
field of each sequence was used. All coding results are 
expressed in bits per filed. Table-1 shows the result of intra 
coding. The MPEG-4 results were obtained using the 
standard MPEG-4 Intra probability tables for the CAE. The 

(a) (b)
Figure-4 16x16 blocks with complicated boundary 

VI - 439



number of bits includes those generated by the CAE coding 
and BAB type coding. Table-2 shows the results of inter 
coding. The MPEG-4 results include the CAE coding, BAB 
type coding, and the motion vector differences. In the quad-
tree block-based coding, both the intra and inter probability 
tables were generated using all five test video sequences. 
The dynamic probability tables were updated after each 
block coded in the optimal pruning quad-tree block coding. 
The results for DSLSC are taken from [9], and rescaled 
from bytes per frame to bits per field. From the Tables 1 and 
2, the quad-tree block-based coding is about 25-50% more 
efficient than MPEG-4 in Intra coding and about 35-65% in 
Inter coding. The optimal pruning quad-tree block-based 
coding is about 35-55% more efficient than MPEG-4 in 
Intra coding and about 40-70% in Inter coding. Thus, the 
proposed method is superior to the MPEG-4 binary shape 
coding in terms of the compression ratio 

Table 1 Intra coding results of MPEG-4 CAE, DSLSC, Quad-Tree 
Block-Based coding, and Optimal Pruning QT Block-based 
Coding (bits/field) 

Sequenc
e

MPEG4 DSLSC Quad Tree Optimal 
pruning QT 

Akiyo 1831 844 1083 906
Bream 2338 1524 1694 1348

Children 3195 2696 2413 2097
News 2341 2104 1393 1059

Weather 1624 1044 1001 801

Table 2 Inter coding results of MPEG-4 CAE, DSLSC, Quad-Tree 
Block-Based, and Optimal Pruning QT Block-based Coding 
(bits/field)

Sequenc
e

MPEG4 DSLSC Quad Tree Optimal 
pruning QT 

Akiyo 1059 480 417 379
Bream 2154 1268 1187 1089

Children 2954 2112 1897 1714
News 958 680 344 301

Weather 1235 636 423 371

5. CONCLUSION 

In this paper, a new block-based lossless coding method for 
binary shape masks has been presented. This technique is 
based on quad-tree coding, in which context-based 
arithmetic coding is used to minimize the number of bits 
required. Adaptive arithmetic coding is used to search the 
optimal pruning quad-tree structure. For a number of 
standard test video sequences, it has been demonstrated that 
this new technique requires between 30 and 70% less bits 
than are required for MPEG-4 CAE. More efficient 
searching algorithm of optimal pruning quad-tree structure 
is left as our future research.

6. REFERENCES 

[1] MPEG Video Group, "MPEG-4 Video VM 18.0," January 
2001.

[2] M. Ghanbari, Video coding: an introduction to standard codecs 
London: Institution of Electrical Engineers, c1999. 

[3] A. K. Katsaggelos, L. P. Kondi, F. W. Meier, J. Ostermann, 
and G. M. Schuster, "MPEG-4 and rate-distortion-based shape-
coding techniques," Proceedings of the IEEE, vol. 86, pp. 1126 
- 1154, June 1998. 

[4] N. Yamaguchi, T. Ida, and T. Watanabe, "A binary shape 
coding method using modified MMR," International
Conference on Image Processing, 1997. Proceedings., vol. 1, 
pp. 504 - 507, Oct. 1997. 

[5] N. Brady, "MPEG-4 standardized methods for the compression 
of arbitrarily shaped video objects," IEEE Transactions 
Circuits and Systems for Video Technology, vol. 9, pp. 1170 - 
1189, 1999. 

[6] L. Y. Wang, C. H. Lai, and K. R. Pan, "Quad-tree-based image 
shape coding with block compensation," Third International 
Conference on Information Technology and Applications. 
ICITA 2005., vol. 1, pp. 716 - 719, July 2005. 

[7] H. Wang, G. Schuster, A. Katsaggelos, and T. appas, "An 
efficient rate-distortion optimal shape coding approach 
utilizing a skeleton-based decomposition," IEEE Transactions 
on Image Processing vol. 12, pp. 1181-1193, Oct. 2003. 

[8] L. Y. Wang and C. H. Lai, "An efficient contour-based 
algorithm for binary video shape coding," IEEE International 
Midwest Symposium on Circuits and Systems. MWSCAS 2004.,
vol. 1, pp. I - 261-4, July 2004. 

[9] S. Aghito and S. Forchhammer, "Context-Based Coding of 
Bilevel Images Enhanced by Digital Straight Line Analysis," 
IEEE Transactions on Image Processing, vol. 15, pp. 2120 - 
2130, Aug. 2006. 

[10] I. Witten, R. Neal, and J. Cleary, "Arithmetic coding for data 
compression," in Communications of the ACM, vol. 30, June 
1987, pp. 520-540. 

[11] R. Shukla, P. Dragotti, M. Do, and M. Vetterli, "Rate-
distrotion optimized tree structured compression algorithms for 
piecewise polynomial images," IEEE Trans. Image Proc., vol. 
14, March 2005. 

[12] R. D. Forni and D. S. Taubman, "On the benefits of leaf 
merging in quad-tree motion models," Image Processing, 
2005. ICIP 2005. IEEE International Conference on, vol. 
Volume 2,  11-14 Sept. 2005 Page(s):II - 858-61, Sep 2005. 

VI - 440


