
COMPRESSION OPTIMIZED TRACING OF DIGITAL CURVES USING GRAPH THEORY

András Hajdu, Ioannis Pitas

Department of Informatics, University of Thessaloniki, Box 451, 54124 Thessaloniki, Greece

Email: pitas@aiia.csd.auth.gr

ABSTRACT

The use of an alphabet of line segments to compose a curve

is a possible approach for curve data compression. An exist-

ing state-of-the-art method considers a quadtree decomposi-

tion of the curve to perform the substitution of the curve parts

from the alphabet of line segments. In this paper, we propose

a graph theory based algorithm for tracing the curve directly

to eliminate the quadtree decomposition needs. This approach

obviously improves the compression efficiency, as longer line

segments can be used. We tune our method further by select-

ing optimal turns at junctions during tracing the curve. We

also discuss briefly how other application fields can take ad-

vantage of the presented approach.

Index Terms— Graph theory, image coding, interpola-

tion, piecewise linear approximation

1. INTRODUCTION

Digital planar curves are used in several fields of computer

graphics, discrete geometry and digital image analysis. Many

results have been revealed regarding their geometric behavior

since [1]. A special topic is digital curve compression. Be-

sides simple techniques like chain coding, a usual way is to

partition the curve into straight line segments [2] for com-

pression. These techniques usually focus on simple (non-

intersecting) curves and assume the knowledge of the sequen-

tial order of the curve points. A state-of-the-art approach con-

siders an alphabet of short line segments (beamlets) to com-

pose the whole curve [3]. This method divides the curve into

smaller parts using quadtree decomposition till having a sin-

gle linear curve segment in every quadtree cell that can be

substituted by a beamlet. The advantage of this approach is

that any curve can be handled by sufficiently fine quadtree

decomposition. However, a drawback is the obligation of de-

composing further, when a cell contains segments that already

could be coded separately.

In this paper, we propose an approach to trace curves hav-

ing arbitrary topology to improve compression ratio, when

Research was partly supported by the project SHARE: Mobile Support

for Rescue Forces, Integrating Multiple Modes of Interaction, EU FP6 Infor-

mation Society Technologies, Contract Number FP6-004218.

splitting the curve into straight line segments. It will become

obvious how the method improves efficiency regarding [3].

The structure of the paper is as follows. In section 2 we

recall the graph theoretical background that serves as a ba-

sis to trace curves. We also explain how the suitable graph

representation of the digital curve can be obtained. Section

3 describes how our technique is adjusted to be optimal for

coding the curve with straight line segments. The method se-

lected for compression and the related results are presented in

section 4. Finally, some conclusions on other possible appli-

cations are discussed in section 5.

2. TRACING CURVES USING GRAPH THEORY

In this section we recall some notions and results of graph the-

ory that are considered to trace a curve. Moreover, we explain

the techniques that were needed to obtain the suitable graph

representation.

2.1. Graph theoretical background

The graph G is defined as a pair (V,E), where V is a set of

vertices, and E is a set of edges between the vertices E =
{(u, v) | u, v ∈ V }. As our aim is to give graph represen-

tations of curves, we focus only on undirected graphs, so

∀u, v ∈ V : (u, v) = (v, u), and thus will use the nota-

tion {u, v} (sets of vertices rather than ordered pairs). To

cover a wide class of curves, we allow loops (edges of type

{u, u}) and multiple edges. The degree of a vertex is the

number of edges containing the vertex. A path is a list of

edges {u1, u2}, {u2, u3}, . . . , {un−1, un} with u1 = un in

the case of a route. G is connected, if its every two vertices

have a path connecting them. An edge is called a bridge, if

its removal makes a connected graph disconnected. A path

through G which includes every edge exactly once is called

Euler path and Euler route if the same vertex is the start and

end of the path [4, 5]. Note that any Euler route is also an Eu-

ler path. G is an Euler graph, if it has an Euler path. An Euler

decomposition of G has the form G = ∪n
i=1

Gi such that all

the Gi’s are disjoint (no edges in common) Euler graphs. We

recall some well-known facts on Euler graphs and their de-

composition [6, 7]:

i) Every Euler graph is connected.

VI - 4531-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

ii) A connected graph contains an Euler route iff all of its ver-

tices have even degree. The route can start from any vertex.

iii) A connected graph contains an Euler path iff at most two

of its vertices have odd degree. The path starts from any of

the vertices having odd degree and ends in the other one.

iv) Every connected graph can be decomposed into disjoint

Euler graphs.

We are ready to summarize our approach in the following

(CT) algorithm for the complete tracing of a curve:

CT algorithm

1. Transfer the curve C to a graph GC = (VC , EC), where

VC contains all the end and crossing points of C. The edges

are the curve segments connecting them.

2. Create an Euler decomposition ∪n
i=1

Ci of C based on GC .

3. Trace all the Ci’s separately through their Euler paths.

2.2. Extracting a graph from a digital curve

The first step of the CT algorithm can be realized easily us-

ing classical results of discrete geometry. Namely, to deter-

mine the vertices, the end points of C can be located as the

ones having exactly one 8-connected neighbor. On the other

hand, as we consider one pixel wide curves, we locate cross-

ing points as the ones that have more than two 8-neighbors. If

the input curve is not one pixel wide, we can apply a general

preliminary thinning step to make it so. Figure 1 depicts the

result of locating end- and crossing points (shown in gray).

The crossing points belonging the same junction will define

only one VC vertice.

(a) (b)

Fig. 1. Locating vertices for the graph representation GC . (a)

Input planar curve C. (b) Extraction of the end and crossing

points to act as vertices (examples zoomed for both types).

After extracting VC from C, we determine the edge set

EC . For this task, first we locate edge end points as such

non-vertex points that are 8-neighbors to vertices, and have

exactly two 8-neighbors in C (if both of their 8-neighbors are

vertices, the edge is degenerated having length of 1). Then,

the edge end points are organized into pairs (edges) based on

the condition that an 8-connected path can be found between

them, whose elements are non-vertices. See Figure 2 for a

close look on the selection of edge end points (shown by dots),

and for the path (edge) points defined by them (shown by ×
marks).

Fig. 2. Extracting edges by keeping curve geometry via locat-

ing edge end points and connecting them with paths.

Every two edge end points define exactly one edge. Note

that loops and multiple edges are also handled by this ap-

proach without any difficulties. To find the 8-paths between

edge end points we can use the recursive Floodfill8 algorithm

starting from the edge end points. Thus, in the end, we will

have the GC representation of the curve C, shown as a simpli-

fied graph in Figure 3. The indices are assigned in the order

of the vertex scanning procedure.

Fig. 3. The graph representation of the planar curve C.

The edges for EC are stored as paths (curve segments) as

a complete description of the original geometry. In the rest

of the paper, we will restrict our investigation to such curves

whose graph representation contains an Euler path.

3. OPTIMIZING TRACING FOR COMPRESSION

The first step to trace an Euler curve is to locate a starting

vertex according to iii) in section 2.1. We check the vertices

and select one having odd degree (e.g. end point of C). If

all the degrees are even, we can choose an arbitrary vertex

to start from. Then we take an edge from the starting vertex

to initialize the tracer. For example, in the graph shown in

VI - 454

Figure 3 two vertices (#1, and #10) have odd degree. Thus,

the Euler path should start from vertex #1 to finish at vertex

#10, or vice versa.

As more Euler paths may exist, we have to decide which

edge to take next, when reaching crossings. Our intention

is to substitute the curve part with straight line segments for

curve compression. The natural decision is to go in the most

straight way through a junction, as we can expect the most

optimal substitutation with a line segment in this case. Thus,

let us assume that we arrive at such a crossing with an edge

end point E0, which has E1, . . . , Ek more edge end points not

visited yet. We calculate the centroid of the crossing as:

E =
1

k

k∑

j=0

Ej . (1)

E can be rounded to have integer coordinates, or considered

as a real valued vector, as well. Let αi denote the angle
� E0EEi. The direction defined by the El edge end point

is said to be optimal, if:

|180◦ − αl| =
k

min
j=1

{|180◦ − αj |}. (2)

See Figure 4a for an example on how the decision is made in

tracing continuation based on the above optimal selection. To

extract a path between E0 and El we can use the Floodfill8

algorithm again. Now, we have to start Floodfill8 from E0

to connect the vertex points of the crossing with selecting the

path with the minimal length. See Figure 4b for the final path

through the crossing.

(a) (b)

Fig. 4. Tracing through crossings optimally. (a) Finding the

most straight direction. (b) Tracing through the crossing by

connecting edge end points.

Using the above optimal decision, we are able to trace the

whole curve along one of its Euler paths. The traced curve is

composed by concatenating the edges with the short segment

going through the vertices. For the full tracing of the curve

see Figure 5, where, besides the start and end point of the

path, arrows show the optimal traverse directions at the cross-

ings. Using the vertex indexing in Figure 3, the Euler path is:

{1,4,5,2,4,8,13,11,7,5,2,3,6,7,9,13,12,6,3,12,11,9,8,10}.

Fig. 5. Tracing the whole curve by choosing optimal direc-

tions at crossings.

During the extraction of an Euler path, note that we are not

always free in choosing the most optimal direction at cross-

ings. Fleury’s algorithm guarantees to find an Euler path, and

has higher priority in the combination with our optimal trac-

ing method regarding its classic recommendations [8, 9]:

• Always leave one edge available to get back to the starting

vertex or to the other odd vertex.

• Do not use an edge to go to a vertex unless there is another

edge available to leave it.

4. COMPRESSING GC WITH LINE SEGMENTS

We can choose from a vast number of techniques to partition

a curve into straight line segments [2]. These techniques can

be further classified as offline (the curve is considered glob-

ally to find an optimal partitioning), or online (the curve is

decomposed into line segments during traversing it). Our ap-

proach is equivalently suitable for both tasks, and we discuss

an online coding possibility here. To partition the curve we

use the robust method presented in [10].

To reach a coding schema from the straight line decom-

position, we replace all the curve segments from an alphabet

of line segments. To have a finite alphabet Λ, its letters are

defined as digital line segments having length at most T pix-

els. Note that Λ also contains all the rotated versions of its

letters. Moreover, to keep Λ compact, we consider unique

straight line segments to connect two points. For this pur-

pose, we consider the Bresenham line drawing algorithm [11]

to create the letters in Λ. Note that, in this way, we allow

some information loss, since the Bresenham segments may

slightly differ from the ones extracted during the online curve

segmentation process. On the other hand, these differences

are really minor perceptually, since straightness is a common

requirement. The cardinality of Λ, and the number of bits

needed for coding a letter are given by:

|Λ| = 4T (T − 1), and log
2
|Λ| ≤ 2(log

2
T + 1), (3)

respectively.

VI - 455

Figure 6 depicts the results for our sample curve C of

length 722 pixels shown in Figure 1a. We marked the end

points of the line segments extracted from C in Figure 6a,

and show the coded version in Figure 6b. We used T = 32 as

a threshold for the maximum line segment length. C could be

coded with 62 line segments, and thus 744 bits were needed

to represent it by Λ. Approximately half of the curve points

were affected by substituting with Bresenham line segments.

(a) (b) (c)

Fig. 6. Coding curves with Bresenham line segments. (a) Par-

titioning the curve. (b) The recovered curve. (c) Partitioning

a silhouette template.

Based on more curves, we found an approximate 50% im-

provement in compression against JBEAM, see Table 1.

Curve # of pixels JBEAM (bits) CT (bits)

General (C) 2127 1586 744

Lines 2745 1398 468

Spring 4113 2308 1224

Script 2511 1419 828

Table 1. Comparative quantitative results against JBEAM.

5. CONCLUSION AND DISCUSSION

Our approach can be improved and tuned in several ways. One

point can be the selection of the most appropriate method for

the Euler decomposition. Considering the parity of the ver-

tices, it is easy to find Euler decompositions by starting from

and finishing at odd vertices. According to preliminary re-

sults, the application of the linearity criteria looks feasible

within this procedure, as well. Another graph theoretical ap-

proach can be to re-formulate our CT algorithm, and consider

curve tracing as a Chinese Postman problem [12]. In this case

some curve parts should be taken more than once during trac-

ing which results in some redundancy of the final code.

The steps of our approach can have individual importance

in other application fields. To ”untie” curves can have im-

pact in curve watermarking [13, 14], where the capability to

provide the input data in terms of few large blocks is highly

welcome. Tracing the curve according to its ”natural” direc-

tion looks feasible in reconstructing hand-written text or fig-

ures, similarly to [15]. The coding technique can be applied

to compress templates used e.g. for silhouette matching with

an example shown in Figure 6c.

6. REFERENCES

[1] A. Rosenfeld, “Arcs and Curves in Digital Pictures,” J.

ACM, vol. 20(1), pp. 81-87, 1973.

[2] R. Klette and A. Rosenfeld, “Digital straightness - a re-

view,” Disc. Appl. Math., vol. 139, pp. 197-230, 2004.

[3] X. Huo and J. Chen, “JBEAM: multiscale curve cod-

ing via beamlets,” IEEE Trans. IP, vol. 14(11), pp. 1665-

1677, 2005.

[4] N.L. Biggs, E.K. Lloyd and R.J. Wilson, “Graph The-

ory,” Calendon Press, 1998.

[5] L. Euler, “Solutio problematis ad geometrian situs perti-

nentis,” Commentarii academiae scientarum Petropoli-

tanae, vol. 8, pp. 128-140, 1736.

[6] H. Fleischner, “Eulerian Graphs and Related Topics,

Part 1. Vol. 1,” volume 45 of Annals of Discrete Mathe-

matics, North-Holland Publishing Co., 1990.

[7] H. Fleischner, “Eulerian Graphs and Related Topics.

Part 1. Vol. 2,” volume 50 of Annals of Discrete Mathe-

matics, North-Holland Publishing Co., 1991.

[8] E. Lucas, “Recreations Mathematiques,” Gauthier-

Villares, 1891.

[9] S. Skiena, “Implementing Discrete Mathematics: Com-

binatorics and Graph Theory with Mathematica,”

Addison-Wesley, 1990.

[10] I. Debled-Rennesson and J. Reveilles, “A linear algo-

rithm for segmentation of digital curves,” Int. J. Patt.

Rec. and Artif. Intell., vol. 9, pp. 635-662, 1995.

[11] J.E. Bresenham, “Algorithm for computer control of a

digital plotter,” IBM Systems Journal, pp. 25-30, 1965.

[12] M.G. Guan, “A survey on the Chinese postman prob-

lem,” J. Math. Res. Exp., vol. 4(1), pp. 113-119, 1984.

[13] H. Gou and M. Wu, “Fingerprinting Curves,” LNCS, vol.

3304, pp. 13-28, 2004.

[14] V. Solachidis and I.Pitas, “Watermarking polygonal

lines using Fourier descriptors,” IEEE CG& A, vol.

24(3), pp. 44-51, 2004.

[15] E. Saund, “Finding perceptually closed paths in sketches

and drawings,” IEEE Trans. PAMI, vol. 25(4), pp. 475-

491, 2003.

VI - 456

