
FAST PRINCIPAL COMPONENT ANALYSIS USING EIGENSPACE MERGING

Liang Liu1, Yunhong Wang2, Qian Wang1, Tieniu Tan1

1National Laboratory of Pattern Recognition
Institute of Automation, Chinese Academy of Sciences, Beijing, China

2School of Computer Science and Engineering
Beihang University, Beijing, China

ABSTRACT
In this paper, we propose a fast algorithm for Principal Com-

ponent Analysis (PCA) dealing with large high-dimensional

data sets. A large data set is firstly divided into several small

data sets. Then, the traditional PCA method is applied on each

small data set and several eigenspace models are obtained,

where each eigenspace model is computed from a small data

set. At last, these eigenspace models are merged into one

eigenspace model which contains the PCA result of the orig-

inal data set. Experiments on the FERET data set show that

this algorithm is much faster than the traditional PCA method,

while the principal components and the reconstruction errors

are almost the same as that given by the traditional method.

Index Terms— principal component analysis, eigenspace

merging.

1. INTRODUCTION

PCA (Principal Component Analysis) is widely used in di-

mension reduction, feature extraction, image compression, etc.

In 1990s, PCA was used in face recognition and made pro-

found influence in this field. The problem of PCA can be

formulated as follows.

For an m × n matrix D, each column can be viewed as

a point in m-dimensional linear space. The task of PCA is

to find the center of the n points and c principal orthonormal

vectors which expand an eigenspace1. In many applications,

c is much smaller than both m and n.

For the traditional PCA method [1], the time complex-

ity2 is O(mn · min(m,n)/2) and the space complexity is

O(mn). When m and n are very large, both the time com-

plexity and the space complexity can be prohibitive in prac-

tice. In this paper, a fast algorithm with a possible loss of pre-

cision is proposed. For this algorithm, the time complexity

is O((
√

6 + 1)cmn) and the space complexity is O(
√

6cm).
These make the task much easier.

The proposed method can be viewed as an application of

eigenspace merging [2, 3, 4]. The algorithm of eigenspace

1An eigenspace is an affine subspace of the original m-dimensional space.
2For simplicity, assume that m � n or m � n.

merging was originally used to merge two eigenspaces with-

out storing covariance matrix or original data. In this paper,

we shall show that eigenspace merging can be used to design

a fast algorithm for PCA. We will also analyze the error bound

introduced by the proposed algorithm.

The remainder of this paper is organized as follows. In

Section 2, a fast algorithm for PCA is proposed and discussed

in detail. In Section 3, some experimental results are pre-

sented. Conclusions are drawn in Section 4.

2. FAST PCA USING EIGENSPACE MERGING

In Section 2.1, we give a description of eigenspace model.

Section 2.2 gives a brief introduction about eigenspace merg-

ing. In Section 2.3, we will present the algorithm of Fast PCA

in detail. In Section 2.4, we analyze the error bound of the

proposed algorithm.

2.1. Eigenspace model description

An eigenspace model is a structure which contains four pa-

rameters, namely Ω = (x,U,Λ, N) [5], where x is the cen-

ter of the eigenspace, and U is a matrix whose columns are

orthonormal bases of the eigenspace, namely eigenvectors. Λ
is a diagonal matrix whose elements along the diagonal are

variances for each principal axis, namely eigenvalues, and N
is the number of samples to construct this eigenspace.

In Section 2.2, we shall see that this model is quite conve-

nient for eigenspace merging.

2.2. A brief introduction about eigenspace merging

Skarbek [2] developed an algorithm to compute eigenspace

merging which is more concise than Hall’s method [3]. Both

methods need not store the covariance matrix of previous train-

ing samples. Given two eigenspace models Ω1 and Ω2, eigen-

space merging is used to find the eigenspace model Ω for the

union of the original data sets assuming that the original data

is not available.

If there are q1 and q2 eigenvectors in Ω1 and Ω2 respec-

tively and we keep c eigenvectors in Ω, the time complexity

VI - 4571-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

of eigenspace merging is O(q1q2m+(q1 + q2 +1)cm) using

the computational trick in [4], where m is the dimension of

the original feature space.

2.3. A fast algorithm for PCA

Given an m × n matrix D, we want to compute c principal

components of the column vectors in D. To accomplish this

task, the time complexity of the traditional PCA method [1]

is O(mn2/2) when m � n.

Our method is shown in Fig. 1. The matrix D is firstly

divided into g small matrix D1, D2, · · · , Dg . The number

of columns in Di(i = 1, 2, · · · , g) is at most k. Then the

traditional PCA method is applied on each small matrix Di

and we can obtain g eigenspace models Ωi(i = 1, 2, · · · , g)
corresponding to Di(i = 1, 2, · · · , g) respectively, with each

eigenspace model containing c eigenvectors. We merge these

eigenspace models into one eigenspace model using binary

tree structure, while making the tree as short as possible (Fig.

1). The final eigenspace model contains c principal compo-

nents of the original data set.

Fig. 1. An illustration of the proposed algorithm. A large

data set is firstly divided into several small data sets. Then

the traditional PCA method is applied on each small data set

and we can get several eigenspace models. These eigenspace

models are merged into one eigenspace model which contains

the principal components of the original data set.

One critical problem is how to choose k optimally. This

needs some careful analysis on the computational time. To

compute c principal components of Di, the computational

time is about O(k2m/2 + ckm). To merge two eigenspace

models where each model contains c eigenvectors, it takes

time O(c2m + (2c + 1)cm) (cf. Section 2.2). The total com-

putational time of our method is about

T (n, k) =
⌈n

k

⌉
(k2m/2 + ckm) + (

⌈n

k

⌉
− 1)(3c2m + cm)

≈ mn(k/2 + 3c2/k + c). (1)

Solve
∂T (n,k)

∂k = 0 and we can get

k =
√

6c. (2)

Notice that k should be an integer. Moreover, a larger k
helps to reduce the accumulated error. So we choose k =⌈√

6c
⌉

and get T (n) ≈ (
√

6 + 1)cmn. Thus, the time com-

plexity is O((
√

6 + 1)cmn). The algorithm of Fast PCA is

summarized as follows.

Algorithm Fast PCA
Input:
D: an m×n matrix which contains data samples as its columns.

c: the number of principal components we want to compute.

Output:
Ω = (x,U,Λ, N): the eigenspace model of D, which con-

tains c principal components.

Method:
1. k ← ⌈√

6c
⌉

2. g ← ⌈
n
k

⌉
, r ← n − (g − 1)k

3. Ω1 ← TPCA(D, 1, r, c)
4. for i = 1 to g − 1
5. Ωi+1 ← TPCA(D, r + (i − 1)k + 1, r + ik, c)
6. end for
7. while g > 1 do
8. for i = 1 to �g/2�
9. Ωi ← MergeEigenspaces(Ω2i−1, Ω2i, c)
10. end for
11. if g is odd

12. Ω(g+1)/2 ← Ωg

13. end if
14. g ← �g/2	
15. end while
16. Ω ← Ω1

In Line 3 and Line 5, TPCA(D, a, b, c) applies the tra-

ditional PCA method on a submatrix of D which contains

b−a+1 columns from the ath column to the bth column in D,

and keeps c eigenvectors in the output eigenspace model. In

Line 9, MergeEigenspaces(Ω2i−1, Ω2i, c) applies eigenspace

merging method (Section 2.2) on Ω2i−1 and Ω2i, and keeps c
eigenvectors in the output eigenspace model Ωi.

For this algorithm, the data can be processed “block” by

“block”. The size of each “block” is at most
√

6cm in Line

3 and Line 5. The merging operation in Line 9 deals with

a data size of 2cm, which is less than
√

6cm. So the space

complexity is O(
√

6cm).
Another important problem is when it is suitable to use

Fast PCA instead of the traditional method. This need a com-

parison of the running time, namely

VI - 458

(
√

6 + 1)cmn < mn · min(m,n)/2. (3)

Hence, we can get the range of c when Fast PCA is faster

than the traditional PCA method

c <
min(m,n)
2(
√

6 + 1)
. (4)

By the algorithm of eigenspace merging [2], the c eigen-

vectors in Ω obtained in Line 16 are guaranteed to be ortho-

normal. Moreover, the mean x in Ω is also guaranteed to be

the same as the output of the traditional PCA method.

2.4. Error bound analysis

Assuming that the modeling errors of Ω1 and Ω2 are εa and

εb respectively, if the error introduced by eigenspace merging

is ε1, the average error for the projected data in the merged

model is bounded by [2]

ε ≤ 2(α1εa + α2εb + ε1). (5)

For simplicity, assume that the modeling error introduced

by MergeEigenspace(Ω2i−1, Ω2i, c) is ε1 and the error in-

duced by TPCA(D, a, b, c) is ε2. Then the error bound of

Fast PCA can be approximately computed as follows.

ε(n) ≤ 2
[
α1ε(2�log2 g�k) + α2ε(n − 2�log2 g�k) + ε1

]

≤ 2
[
ε(2�log2 g�k) + ε1

]

<
2n√
6c

(2ε1 + ε2) + 2(ε1 + ε2). (6)

This is the upper bound of the average error. In many ap-

plications, the error can be much lower than this error bound

because the samples are often similar to each other in a data

set (e.g. face image data set, as we will see in Section 3).

If we merge the eigenspace models sequentially (FPCA2

method in Section 3), the error bound will be

ε′(n) ≤ 2
[
n − k

n
ε′(n − k) +

k

n
ε′(k) + ε1

]

< 2n/(
√

6c) · 3(
√

6c + 1)
n

(2ε1 + ε2). (7)

We can see that the upper bound of ε′(n) is exponential in

n, which is much worse than that of ε(n). This is the reason

why we merge the eigenspace models using a shortest binary

tree structure instead of merging them sequentially.

If we want to improve the precision of Fast PCA while we

cannot afford the computational complexity of the traditional

method, we can choose a larger c (cf. Formula (5)) in Fast

PCA to balance the precision and computational complexity.

Fig. 2. The first 8 images in the data set.

Table 1. Comparison of the running time of TPCA, IPCA,

FPCA2 and FPCA. (s)

��������c
Method

TPCA [1] IPCA [5] FPCA2 FPCA

1 4.88 1.00 0.99 0.97

2 4.91 1.59 1.52 1.44

4 4.91 4.31 1.63 1.61

8 4.95 8.73 1.80 1.80

16 5.02 18.33 2.19 2.23

32 5.17 27.34 3.08 3.20

64 5.48 90.63 4.77 4.73

3. EXPERIMENTS

In order to evaluate the effectiveness of the proposed algo-

rithm, we have conducted some experiments on a subset of

the FERET data set. This subset contains 540 face images

from 270 subjects with each subject corresponding to 2 face

images. All images contain frontal faces with different light

conditions. All images are gray-level images with the same

size of 142×120. The first 8 images are shown in Fig. 2.

In our experiments, we firstly transform each image into a

vector by concatenating all columns in the image. In this way,

we get a 17040×540 matrix with each column representing a

face image. All experiments are done on this matrix. Apart

from the proposed method and the traditional method, we also

do experiments using some other methods. The methods we

used in our experiments are listed as follows.

-TPCA [1], the traditional PCA method.

-IPCA [5], namely Incremental PCA, this method can be

viewed as a special case of FPCA2 by choosing the size of

each ”block” as one, but keeping at most c eigenvectors.

-FPCA2, a variation of Fast PCA. In this method, the

eigenspace models are merged sequentially. In other words,

we merge Ω2, Ω3 , · · · , Ωg into Ω1 one by one.

-FPCA, namely Fast PCA, the proposed method (Section

2.3).

We have done experiments using these four methods for

c = 1, 2, 4, 8, · · · , 64. Table 1 shows the running time of each

method. We can see that the running time of the proposed

method and FPCA2 are almost the same. They are both faster

than the other two methods when 1 ≤ c ≤ 64. In theory, the

time complexity and space complexity of the four methods

are listed in Table 2.

VI - 459

Table 2. Comparison of time complexity and space complex-

ity of TPCA, IPCA, FPCA2 and FPCA.
��������Method

Time complexity Space complexity

TPCA mn · min(m,n)/2 mn
IPCA c2mn cm

FPCA2 (
√

6 + 1)cmn
√

6cm

FPCA (
√

6 + 1)cmn
√

6cm

Table 3. Comparison of the reconstruction errors of TPCA,

IPCA, FPCA2 and FPCA.
��������c

Method
TPCA IPCA FPCA2 FPCA

1 30.719 30.720 30.721 30.732

2 27.955 28.098 28.267 27.994

4 24.983 25.054 25.045 25.064

8 21.710 21.831 21.805 21.803

16 18.294 18.418 18.421 18.401

32 14.837 14.989 14.936 14.918

64 11.352 11.489 11.420 11.402

We have also compared the reconstruction errors of these

four methods. The reconstruction error is defined as

e =

√
1

mn

∥∥∥D −
[
UUT

(
D − D

)
+ D

]∥∥∥2

F
, (8)

where D is an m × n matrix with each column containing

the mean vector of all columns in D, and U is an m × c
matrix with each column containing a principal component.

‖ · ‖F is the Frobenius norm. Table 3 shows the reconstruc-

tion errors of the four methods. We can see that the recon-

struction errors are quite close for different methods. When

c = 2, 8, 16, 32, 64, the reconstruction errors given by FPCA

are closer to TPCA than those given by IPCA and FPCA2.

This shows that FPCA is superior to IPCA and FPCA2 in

precision.

Fig. 3 shows 8 principal components produced by the four

methods for c = 8. The four rows in Fig. 4 (from top to

bottom) are produced by TPCA, IPCA, FPCA2 and FPCA

respectively. It is very clear that the results given by FPCA is

the closest to that given by TPCA.

4. CONCLUSIONS

In this paper, we have presented a fast algorithm for PCA

using eigenspace merging. The time complexity of this algo-

rithm is O((
√

6 + 1)cmn), if we want to compute c principal

components from an m × n matrix which contains data sam-

ples as its columns. The space complexity of the proposed

Fig. 3. 8 principal components produced by TPCA, IPCA,

FPCA2 and FPCA respectively (from the top row to the bot-

tom row) for c = 8. Pay attention to the first component

produced by each method.

algorithm is O(
√

6cm), which is not related to n. This makes

the computation much easier for large data set. Although

there may be some loss of precision in theory, experiments

show that the proposed algorithm produces almost the same

principal components as that given by the traditional method.

5. ACKNOWLEDGEMENT

This work was supported by Program of New Century Excel-

lent Talents in University, National Natural Science Founda-

tion of China (No. 60575003, 60332010, 60335010, 60121302,

60275003, 69825105, 60605008), Joint Project supported by

National Science Foundation of China and Royal Society of

UK (60710059), the National Basic Research Program (Grant

No.2004CB318110), Hi-Tech Research and Development Pro-

gram of China (2006AA01Z133, 2006AA01Z193) and the

Chinese Academy of Sciences.

6. REFERENCES

[1] M. Turk and A. Pentland, “Eigenfaces for recognition,”

Journal of Cognitive Neuroscience, March 1991.

[2] W. Skarbek, “Merging subspace models for face recog-

nition,” In proceedings of the CAIP, pp. 606–613, 2003.

[3] P. M. Hall, D. Marshall, and R. R. Martin, “Merging

and splitting eigenspace models,” IEEE Transacetions on
Pattern Analysis and Machine Intelligence, vol. 22, no. 9,

pp. 1042–1049, 2000.

[4] A. Franco, A. Lumini, and D. Maio, “Eigenspace merg-

ing for model updating,” The 16th International Confer-
ence on Pattern Recognition, vol. 2, pp. 156–159, 2002.

[5] P. M. Hall, D. Marshall, and R. R. Martin, “Incremental

eigenanalysis for classification,” In The British Machine
Vision Conference, pp. 286–295, 1998.

VI - 460

