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ABSTRACT 
 
A visual quality metric for video provides a mathematical 
expression for visual quality. We show how the coding gain 
of rate-distortion optimal (RDopt) encoding of the quantizer 
step size depends on the exact shape of this expression. For 
the Mean Square Error, we find a small coding gain (1% on 
average) compared to using a constant quantizer. However, 
we do find a significant gain for the Structural Similarity 
(SSIM) (12% on average). Finally, we show parameter 
tuning using the new Perceptually Weighted Error (PWE). 
The tuning results in a parameter setting of PWE that offers 
the best visual quality of RDopt encoding. 
 
Index Terms— Video compression, rate-distortion 
optimization, objective visual quality metrics. 
 

1. INTRODUCTION 
 
The standard quality metric for evaluating the quality of 
compressed video is the Mean Square Error (MSE), or, 
equivalently, the Peak Signal to Noise Ratio (PSNR). Many 
quality metrics have been proposed that capture different 
aspects of the human visual system (HVS). Examples are 
the Picture Quality Rating (PQR) [1] and the Structural 
Similarly (SSIM) [2]. 
Besides using quality metrics for quality evaluation, they 
are also used in rate-distortion optimization for optimized 
encoding. The H.264 reference encoder contains rate-
distortion optimization towards MSE for motion vector 
estimation and for mode decision [3]. Other authors report 
the usage of SSIM for the same coding decisions of motion 
vector estimation and mode decision [4;5]. 
In this paper, we examine the compression gain of rate-
distortion optimization of the quantizer step size. As a 
constant quantizer step size is close to optimal for MSE, 
rate-distortion optimization for the quantizer is not needed 
in encoders that aim for the lowest MSE, or, conversely, 
maximum PSNR. However, it is known that adaptive 
quantization, where the quantization is modulated according 
to perception rules, yields a clearly better visual quality. 
Therefore, we expect a larger gain of rate-distortion 
optimization for visual quality metrics. 

To examine the dependency of coding gain on the used 
quality metric, we introduce the parameterized Perceptually 
Weighted Error (PWE). Depending on parameter settings in 
this metric, PWE can be similar to both MSE and SSIM. 
Besides measuring the influence on coding gain of 
parameter settings in PWE, we show how this metric tuned 
such that it gives the optimal visual quality for a given 
bitrate. 
 
The outline of this paper is as follows. In section 2, we 
introduce PWE and describe its relation to existing quality 
metrics. Parameter tuning is discussed in section 3. 
Experimental results for the coding gain depending on PWE 
parameters are given in section 4. Finally, we give some 
concluding remarks in section 5. 
 

2. QUALITY METRICS 
 
In this section we first give the definition of the Mean 
Square Error (MSE) and Structural Similarity. Then we 
introduce the new Perceptually Weighted Error PWE. For 
brevity of notation, we will give the luminance contribution 
for the metrics discussed. The expressions for the 
chrominance contributions are very similar to that of 
luminance. They are included in the final distortion by 
weighted addition. 
 
2.1 Mean Square Error / Peak Signal to Noise Ratio 
The Mean Square Error (MSE) is a mean over all N pixels 
in the sequence: 
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The Mean Square Error is equivalent to the Peak Signal to 
Noise Ratio, given by: 
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2.2 Structural Similarity 
The Structural Similarity (SSIM) is a sum of local 
contributions: 
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where the sum is taken over all n=16x16 macroblocks in the 
sequence. The local contribution is given by: 
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where  is the local cross-correlation between original and 
processed video s and sr.  and r are the local means; 2 
and r

2 are the local variances. The local contribution can be 
re-written as: 
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Where the s’ are the variations around the local mean: 
   ss' .     (6) 

and 2)''( ss r  is the mean square difference between s and 
s’: 
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SSIM is a quality metric: a higher value means better 
quality. To obtain a distortion metric needed for rate-
distortion optimization we use (1-SSIM). Following [2], we 
use C1 = (0.01·255)2 = 6.50  and C2 = (0.03·255)2 = 58.52. 
 
We will give a short motivation for the second contribution 
of SSIM expression in equation (7), which is the most 
important contribution in the coding context. See reference 
[2] for a further motivation. The variance  of the original 
video is present to reflect masking: A given error in a high-
activity area (high ) is perceived less than the same error in 
a low-activity area. A completely proportional relation 
would result in extremely low SSIM values near =0, which 
is not in agreement with how errors are perceived. This 
explains the presence of the factor C2. 
 
2.3 Perceptually Weighted Error 
As will be demonstrated by the experiments in section 3, 
SSIM has some disadvantages when used as a distortion 
metric in rate-distortion optimized encoding. We therefore 
introduce the new Perceptually Weighted Error. As SSIM, 
the Perceptually Weighted Error (PWE) is also a sum of 
local contributions: 
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With parameter settings p1=p2=0 we find that PWE is 
equivalent to MSE: 
   ]0[PWE2MSE 21 pp    (9) 
With p1=p2=0, the setting for k1 and k2 are irrelevant. 
PWE and SSIM are equal in the second order 
approximation around sr = s with the following parameter 
settings: 
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Where )|(|O 4ss r  denotes the higher order contributions. 
This result is derived by relating equation 5 for SSIM to the 
definition of PWE (equation 8). We conclude that with the 
right setting for p1 and p2, PWE can be more similar to MSE 
(p 0) or to SSIM (p 2). 
The motivation for PWE is for the larger part the same as 
that of SSIM given at the end of the previous section. Again 
we focus on the second contribution. The constant k2

p2 has 
the same role as C2 in SSIM in adjusting the amount 
masking at low . With the introduction of the parameter p 
as the exponent of , we add the possibility to adjust the 
amount of masking for medium and large  (  > k2).  
 

3. PARAMETER TUNING 
 
In this section we introduce an efficient method to tune the 
parameters p in a distortion metric M(p) for video coding 
using rate-distortion optimized encoding: 
 
Suppose we want to compare two different metrics MA and 
MB, where MA and MB are two forms of the same general 
metric M(p), with different parameter settings pA and pB. 
First, we perform optimized encoding to obtain sequences A 
and B. We have now generated 2 video sequences at the 
same bitrate, where the two distortion metrics MA and MB 
disagree on which has the best visual quality. According to 
metric A, sequence A has the better quality; according to 
metric B, B is to be preferred. By visual inspection, we can 
select which video actually has the best quality and thus 
which of the parameter settings pA or pB is to be preferred. 
 
We briefly show what the benefits of this technique are 
compared to other techniques for parameter tuning. One 
alternative technique is to fit the parameters to a set of 
images or videos and the associated rating given by a group 
of observers, such as the test set used by the Video Quality 
Experts Group [6]. Unlike the proposed technique, this 
technique does not give insight in the influence of parameter 
variations on the details that are emphasized by the metric. 
A second alternative technique is to use a qualitative 
physical model for the human visual system. Today, these 
models still contain some imperfections. Therefore, 
parameter tuning is still needed to get the best results. 
 
The procedure of parameter tuning will be demonstrated for 
the parameter p, which is used for both p1 and p2 (p1=p2=p). 
For the parameters k1 and k2, we use the values based on the 
relation with SSIM as given in equation 13. Rate-distortion 
optimization is done for the quantizer step size q. 
Results are given for MPEG-2 encoding of the “tennis” 
sequence. A part of an uncompressed frame is given in 
figure 1. Rate-distortion optimization for the quantizer step 
size q has been implemented in the MSSG TM-5 encoder 
[7]. With this encoder, two sequences A and B have been 
generated as described above, with pA=0 (MSE setting of 
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PWE) and pB=2 (SSIM setting of PWE). Comparing 
sequences A and B in figures 2a and 2b, respectively, we 
find that with p=0, many bits are spent in the text area. 
Fewer bits are spent on the wall area, resulting in texture 
flattening. Conversely, for p=2, we find that with this 
parameter setting, less bits are spent in this area, resulting in 
lower image quality. Instead, more bits are spent the more 
subtle texture are on the brown wall area. This can be 
understood since for p=2, PWE displays a strong masking 
of errors in areas with large signal variations (large ) such 
as the text area with its black-white transitions. 
We now can tune the parameter p by generating more 
sequences at different values. It was found that a value of 
p=1.5 provides a good trade-off between larger and smaller 
details as compared to both p=0 and p=2 for this set of 
sequences (see figure 1c). This example shows 
demonstrates how the proposed technique is used to quickly 
tune metric parameters for a specific type of content. 

 
4. PARAMETER DEPENDENT CODING GAIN 

 
In this section we consider the dependence of coding gain of 
RDopt encoding of the quantizer step size on the PWE 
parameter p=p1=p2. The same MPEG-2 encoder is used as 
described in the previous section. The reported results are 
average results of a set of 6 representative test sequences 
(“Cheer”, “Suzie”, ”Tennis”, “Shields”, “Cityscape” and 
“Airshow”) at a resolution 720x480 with progressive scan 
25 frames per seconds. 
The bitrate reduction is measured with respect to reference 
techniques. As a reference constant quantizer (constant Q) 
encoding and TM-5 adaptive quantization [7] are used. We 
have encoded 13 frames with a GOP length of 12 frames 
and GOP structure I B B P B B P… . The default TM-5 
quantization matrices for intra and inter coding were used. 
The bitrate reduction is determined as follows. First, 
encoding is done with a reference technique, resulting in 
distortion D=D0, as measured distortion metric M, and 
reference rate Rref(D0). Then, RDopt encoding for M is done 
such that we achieve the same distortion D0, resulting in rate 
RRDopt(D=D0). We express the compression efficiency gain 
as the bitrate reduction as a fraction of the reference bitrate: 
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The average bitrate reduction for bitrates ranging from 1.5 
to 8 Mbit/s has been calculated using the Bjontegaard 
method [8]. The results for different values of p, averaged 
over the test set, are given in table 1 below. The value p=1.5 
is a result of parameter tuning as discussed in section 3. 
Note that this experiment is different from the results given 
in figure 1 in that we consider the bitrate reduction at a 
constant distortion, whereas in figure 1, encoding results at 
a constant bitrate are compared. 
The gain G depends on the distortion metric used as a result 
of the requirement that the bitrate reduction is measured for 

 
    original uncompressed frame 

 
    a) encoded PWE[p=0] optimal 

 
    b) encoded PWE[p=2] optimal 

 
   c) encoded PWE[p=1.5] optimal  

Figure 1: Parameter tuning for the parameter p in the 
perceptually weighted error (PWE). The images a-c are encoded 
versions at the same bitrate of the original video (top) using rate-
distortion optimal encoding for p=0 (MSE setting of PWE) in (a); 

p=2 (SSIM setting) in (b) and p=1.5 (tuned p) in (c). This 
experiment shows which details in a frame are emphasized, 

depending on distortion metric parameters. 
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a constant value of M. Also, the metric M is used in the 
RDopt encoding. 
Table 1: Compression efficiency gain of optimized encoding for 
PWE with parameter setting p with respect to constant 
quantization encoding (constant Q) and TM-5 adaptive 
quantization (adaptive Q). Results given as a percentage of the 
reference bitrate averaged over a range of bitrates (see figure 1). 
Also given is the standard deviation SD of the bitrate reduction 
across the test sequences. 
 

G 
(%±SD) 

Reference 

p constant Q adaptive Q 
0 1±2 20±7 

1.5 8±4 17±3 
2 12±6 14±4 

 
The results show that RDopt encoding for the quantizer q 
yields little gain for p=0 (MSE setting) compared to the best 
reference: constant Q encoding. This result explains why 
RDopt for the quantizer step size is not used in encoders 
looking to minimize MSE (or maximize PSNR). 
Conversely, the rate-distortion optimal quantizer yields 
significant gains for p=1.5 and p=2. For constant Q, this 
gain is explained from the fact that constant Q distributes 
the error equally over the video, not taking into account 
masking effects. For adaptive Q, masking effects are taken 
into account. However, here the trade-off with bitrate is not 
made as in the case of RDopt encoding. 
In figure 2, bitrate reductions for p=2 with respect to 
constant Q are given as a function of bitrate. Note that the 
gain diminishes at low bitrates (< 1 Mbit/s). Amongst 
others, this is a result of the addition bit cost needed for 
signaling a change in quantization level. 
  
 

5. CONCLUDING REMARKS 
 

Experiments show that constant quantizer encoding is close 
to optimal for MSE. However, considerable gains can be 
achieved for perceptual metrics such as the tuned 
Perceptually Weighted Error (PWE) and Structural 
Similarity (SSIM). 
Rate-distortion optimal encoding of the quantizer level 
provides an efficient way to tune parameters in a visual 
quality metric. It directly shows which type of details is 
emphasized as a result of a given parameter setting. For the 
tunable PWE, we find that a setting balancing MSE and 
SSIM behavior is optimal for coding purposes. 
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Figure 2: Bitrate reduction for rate-distortion optimal encoding 
for PWE[p=2] (SSIM setting) as a function of the bitrate in Mbit/s. 

Bitrate reduction are calculated compared to constant quantizer 
encoding. Results are given for all 6 test sequences. 
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