LOW POWER LOOKUP TABLES FOR HUFFMAN DECODING

Jason McNeely and Magdy Bayoumi
{jbm8240, mab}(@cacs.louisiana.edu
The Center for Advanced Computer Studies
University of Louisiana at Lafayette

ABSTRACT

Mobile video devices are energy constrained and therefore
need to contain circuits that consume a minimum amount of
energy. In this paper, different architectures of lookup tables
for Huffman decoding are studied. The PLA type structure is
common in these Huffman lookup tables because of their
speed and simplicity advantage. However, we determine
that the tree structure for table lookup can be a lower power
alternative than a PLA structure in certain situations. These
situations accounted for 56% of our total simulations runs,
and of these runs, the average power savings of the tree in
those situations was 78%. Another goal of this paper is to
show the effects of varying the table size and varying the
probability distributions of a table on power, area, and delay.

Index Terms— video, Huffman codes, variable length
codes, table lookup, low power

1. INTRODUCTION

Two opposing restrictions in a mobile video device are
having the processing capability to decode fast enough to
meet the demands of the desired resolution and quality while
still minimizing the energy consumption such that the battery
life is prolonged. For a mobile device, some middle ground
can be reached where we relax the high speed demands on
the decoder, giving us the ability to employ techniques to
reduce the energy consumption. The high speed demand is
relaxed because most mobile devices cannot support such
high resolutions as HDTV (High-Definition Television). For
example, a mobile device such as the Apple iPod supports a
resolution of 320x240 [1], whereas HDTV requires up to
1920x1088 [2]. In this paper, we compare different lookup
table architectures in terms of power, area, and delay, which
are used to decode variable length codes coming from the
bitstream. Variable length codes, or Huffman codes [3],
have been used in many video, imaging, and other
compression applications, including in the newest video
standard, H.264 [2].

A typical variable length code (VLC) decoder consists of
a VLC detector, lookup table (LUT), and a controller. The
controller may be as simple as an accumulator. This
structure is shown in figure 1. The bitstream entering the

1-4244-1437-7/07/$20.00 ©2007 IEEE

VI - 465

Bit Stream

Cy

VLC Detector

control

Decoded Symbols

Figure 1: Typical VLC decoder

decoder is a series of codewords whose lengths are not
known until they are decoded. A fixed number of bits from
the bitstream, C, (codewords from bitstream), are sent to the
VLC detector. The VLC detector is comprised of either a
shift register or a barrel shifter depending on if the
architecture is serial or parallel. The output of the VLC
detector is the aligned codeword, C, (aligned codeword). By
aligned, we mean that the first bit of the codeword starts at
the most significant bit position of C,. The aligned codeword
is then sent to the lookup table (LUT) for decoding. The
LUT is the focus of this paper. The output of the LUT is the
decoded symbol, S, and the length of its codeword, /. The
controller can then send this length to the VLC detector to
shift the bits / times to align the next codeword for decoding.
The VLC detector is re-loaded with another set of Cj bits if
it runs out of bits to shift. Other design conventions also
exist such as a ROM or PLA (Programmable Logic Array)
based finite state machine, as discussed in [4]. However, we
only consider the typical architecture in this paper because it
fits well with our goals of having an interchangeable LUT
style for testing.

For example, consider an alphabet with only ‘A’, ‘B’,
‘C’, and ‘D’ as possible symbols. Let their codewords be 1,
01, 000, and 001 respectively. Let the incoming bitstream be
10011 (which is ‘A’, ‘D’, ‘A’). C, would first be set to 100
and loaded into the VLC Detector. This is because the VLC
detector must be able to handle the largest codeword, which
in this case is 3 bits. Since the accumulator (controller) starts

ICIP 2007

at 0, no shifting occurs, so C, also becomes 100. The LUT
decodes the 1 in the MSB of C, as ‘A’, which is sent out
through §. The LUT also sets / to one indicating to the
accumulator/controller that the VLC detector needs to shift
once. So, C, then becomes 00X (all bits shifted left by one).
The ‘X’ is actually a ‘1’ in this case, since the barrel shifter
in the VLC detector just rotated the first bit to the end, but
we will not use it again. If no codeword is found, as in this
case since 00 alone is not valid, the shifter must be reloaded
with more bits through C;.

As mentioned earlier, there are power and delay
restrictions on the variable length decoder. Some authors
have successfully shown methods to reduce the power in the
decoder by either breaking the LUT into parts and/or
grouping codewords in the table [5], [6], [7], or even
modifying the barrel shifter in the VLC detector [8], [9].

In [5], a large table is broken into multiple parts. Later,
[6] improves on this power reduction by considering
successive codewords by making use of a cache type of
lookup table. Yet another technique is breaking tables into
groups using a mincode for each group [7].

In this paper, however, we are not as concerned about
how to divide the table, but what underlying table structure
can be used to provide low power decoding, regardless of
how the table is broken up. The previously mentioned work
focused mainly on how to divide or otherwise manipulate
the tables. The actual architecture of table(s) used is usually
either not mentioned or specified as PLA, static CMOS, or
other. We endeavor here to determine which underlying
lookup structure would be a good choice, even when
applying one of the previously published power reduction
techniques.

2. LUT ARCHITECTURES CONSIDERED

The lookup tables in the variable length decoder (VLD)
typically use more power and area than the other
components in the VLD [5]. For comparison purposes, we
compared the PLA, minimized PLA, and tree architectures.
The PLA is a well known structure, and the minimized PLA
here is simply a minimized PLA wusing the Espresso
minimization tool. The tree structure is discussed in [4] and
an example is shown below in figure 2.

The tree in figure 2 is made up of demultiplexers, leaves
which are storage cells (labeled A-D), and two or-gate
banks. Each storage cell holds the symbol ID and codeword
length for its codeword. Only the storage cell that is
activated will output its data, all others output 0’s to the or
banks. So, from the previous example, if C, = 100, the first
demux would propagate the 1 (or token) to leaf ‘A’, which is
activated and sends out the symbol A (which may be
represented by 00 on line §) and the length of 1 to the or
banks. The other leaves did not get the token since it went
only down one branch of the tree. All other leaves (storage
cells), therefore, continue outputting zero to the or banks.

Cal2] Cal1] C.[0]

Figure 2: Tree Structure LUT

The tree has not received much attention in research
literature lately, probably due to its lower speed, which
contradicts the high speed goals of most designs. However,
we will show it has power advantages and thus can be used
as a low power lookup table in some cases.

3. TEST METHODOLOGY

We compared these three lookup table architectures
considering power, area, and delay to make our conclusions.
In addition, we also wish to see the effects on the area,
power, and delay given different probability distributions of
each table size. So, for each architecture (PLA, minPLA,
and tree), we varied:

e the size of the table - ts

e the probability distribution of the codewords in that

table - X

For each of the three lookup table architectures, we
generated hardware for 11 different table sizes, ts, of 5, 19,
33,47, 61,75, 89, 103, 117,131, and 145 entries and varied
the probability distribution with five different values of X:
0.0, 0.5, 0.7, 1.0, and 2.0, for each table size. Thus, we have
a total of 55 tables. Once a table’s symbols and probabilities
for a given X and ts are created, we create Huffman
codewords for each symbol using the Huffman algorithm.
Then hardware is generated and simulated. There are 165
total simulation runs, three for each table, since there are
three architectures under comparison.

The X we used is what we call the “X-factor”. An X-
factor of zero means all the symbols in the table have the
same probability, which means the Huffman coding gives
them all approximately the same codeword length. Higher
X-factors skew the probabilities more. When X is 2, the first
symbol has a high probability, and the subsequent symbols
probabilities drop off considerably, giving the first symbol’s
codeword a very short length, and other codewords much
longer lengths. Assigning the probability of each codeword

VI - 466

in descending order using the X-factor was done with the
following formula:

. 1
P(z,x,s)=iX'S ts>i>0 (M

where i is the index of the symbol (starting at 1) in the table,
s is the scaling factor to make sure the probabilities of the
table add up to 1 (100%), and X is the previously discussed
X-factor. The constant s for a table is defined as:

ts
s(ts,x) = Zi @)
i=1 1
where ts is the table size. So, for example, for a table size of
33, and X-factor of 1, the scaling factor s would be 4.09.
This would give the first symbol (i=1), a probability of 24%,
and symbol i=33 a probability of 0.74%.

In order to create the simulation based power analysis, we
used a verilog test bench (functioning as the VLC detector)
that supplies the aligned codeword to the LUT (tree, PLA, or
minPLA) under test and received the symbol and codeword
length that the LUT generated. This is to ensure that the
LUT was functionally correct and decoded the proper
codeword. During the simulation, measurements of power
were taken of the LUT. The LUT was at the layout stage in
Cadence Encounter. The power measurements were
collected by using simulation based power analysis with
0.18 um technology libraries. Also, it was important that the
input C, be statistically correct. Our testbench had a
randomly generated test bitstream which was created based
on the statistics of the particular table used to generate the
LUT under test. For example, if the first symbol had a
probability of 33%, then 33% of the codewords fed to the
LUT would have been the codeword of that first symbol.
This is more realistic than just randomly selecting a
codeword to decode at each time interval, since this would
not be the case in a real environment and may cause less
reliable power results.

4. RESULTS

Figures 3-7 show the power as a function of table size for
each of the X-factor values. The PLA is only shown in
figure 3 because its power increases significantly for
increasing X-factors, so we wish to focus on the minPLA as
compared to the tree.

In nearly all cases, for very small table sizes, the
minimized PLA has the lowest power. However, as the table
size is increased, and X-factor increased, the tree consumes
less power than the minPLA. For example, for X=0.7, the
tree uses less power for sizes greater than 47. For X=2, a
table with more than 19 entries would use less power than a
minimized PLA. The tree, when X is large, will be deep, but
not full. Most of the switching activity will be near the top
or root of the tree, since the token will not very often

Power: X=0

10

Power (mW)

o N A O

T T
5 19 33 47 61 75 89 103 117 131 145

Table Size

‘ —e— minPLA —=— tree —a— PLA

Figure 3: Power consumption of various table types with X=0

Power: X=0.5

5

4 /
E 3 /./ /
£2
o
o 47.4:4—!———I———'

1 /

0 T T T T T T T

5 19 33 47 61 75 89 103 117 131 145
Table Size

‘—0— minPLA —s— tree

Figure 4: Power consumption with X=0.5

Power: X=0.7

o
=}

w N
o o

/

Power (mW)

2.0
1.0 /«;{’//-/"—"—"/‘.
0.0 T \ \ \ \ \

5 19 33 47 61 75 89 103 117 131 145
Table Size

‘—0— minPLA —=— tree ‘

Figure 5: Power consumption with X=0.7

propagate past the top of the tree for large X-factors. If a
single bit changes on the minPLA input, multiple inputs
could be switched, since each input bit is normally fed to all
gates in the and plane, whereas it may only go to a single
demux in the tree. An input will go to many demuxes in a
tree only for small X- factors, such as 0, where the tree will
be shorter and fuller. Also, the tree is fairly stable when it
comes to power as compared to the minPLA. The minimized
PLAs power generally increases more for increasing table

VI - 467

Power: X=1

Power (mW)

) W }

0

5 19 33 47 61 75 89 103 117 131 145
Table Size

‘—O—minPLA+tree‘

Figure 6: Power consumption with X=1

Power: X=2

Power (mW)
oO=_2NwWhOON®
L

5 19 33 47 61 75 89 103 117 131 145
Table Size

‘—O—minPLA+tree‘

Figure 7: Power consumption with X=2

sizes than the tree’s power does. From the total of 55 runs
for each style, 31 runs show the tree consuming less power.

Considering the delay of the three architectures, data was
also collected. The minPLA is faster than the tree structure
in nearly all cases. The average delay across all runs of the
tree was 1.86ns and 1.18ns for the minimized PLA. So, for
some savings in power, the extra delay of the tree compared
to the minPLA may be acceptable.

In terms of area, minPLA is also smaller than that of the
tree structure in all cases. We noted that the tree does not
vary in size very much for changing values of X. Actually,
it is the minPLA whose area varies more widely for a
changing X-factor. For example, for the largest table size of
145, the area of the tree for any X-factor stays within 70000-
80000 um’. However, the minimized PLA varies from
about 6000 to 59000 pm’. Larger X-factors cause an
increase in area of the minPLA for a given table size. The
tree, on the other hand, basically just re-arranges its leaves
and demuxes in response to larger X-factors by making
longer branches. So, the area of the tree is more stable and
does not vary widely with changing X-factors as the
minPLA will. In summary, the area of the tree is larger than
the minPLA and usually slower than the minPLA, but has
some advantages in terms of power for large and highly
skewed tables.

5. CONCLUSIONS

In this paper, we have compared the power consumption of
three types of lookup tables. The tree lookup structure
consumes the lowest power for cases when the table size is
large and the probabilities of symbols are such that the first
codewords are highly likely and the subsequent codeword
probabilities drop off dramatically (meaning large X-
Factor). However, the minimized PLA uses the least power
for smaller tables with smaller X-Factors. The choice,
therefore, of a table lookup style, depends on the size of the
lookup table as well as the probability distribution of that
table.

6. ACKNOWLEDGEMENTS

The authors acknowledge the support of the U.S.
Department of Energy (DoE), EETAPP program
DE97ER12220, the Governor's Information Technology
Initiative, and the support of NSF, INF 6-001-006.

7. REFERENCES

[11 Apple, “Apple — iPod — technical specifications,” December
2006, http://www.apple.com/ipod/specs.html

[2] Advanced video coding for generic audiovisual services, ITU-
T recommendation H.264, May, 2003.

[3] D.A. Huffman, “A method for the construction of minimum-
redundancy codes,” Proceedings of the IRE, 1952, pp. 1098.

[4] S.-F. Chang and D.G. Messerschmitt, "Designing high-
throughput VLC decoder. 1. Concurrent VLSI architectures,"
IEEE Transactions on Circuits and Systems for Video
Technology, vol. 2, pp. 187-196, 1992.

[5] Seong Hwan Cho, T. Xanthopoulos and A.P. Chandrakasan,
"A low power variable length decoder for MPEG-2 based on
nonuniform fine-grain table partitioning,", /EEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 7, pp.
249-257, 1999

[6] Sung-Won Lee and In-Cheol Park, "A low-power variable
length decoder for MPEG-2 based on successive decoding of
short codewords," IEEE Transactions on Circuits and
Systems 1I: Analog and Digital Signal Processing, vol. 50,
pp. 73-82, 2003.

[7] Cheng-Hung Liu, Bai-Jue Shieh and Chen-Yi Lee, "A low-
power group-based VLD design," Proceedings of the 2004
International Symposium on Circuits and Systems, 2004, pp.
11-337-40 Vol.2.

[8] Chia-Hsing Lin and Chein-Wei Jen, "Low power parallel
Huffman decoding," Electronics Letters, vol. 34, pp. 240-241,
1998.

[9] P.A. Beerel, Sangyun Kim, Pei-Chuan Yeh and Kyeounsoo
Kim, "Statistically optimized asynchronous barrel shifters for
variable length codecs," International Symposium on Low
Power Electronics and Design, 1999, pp. 261-263.

VI - 468

