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ABSTRACT 
 

Remote navigation in image-based scene representations 
requires random access to parts of the compressed reference 
image data to compose virtual views. The degree of 
dependencies introduced during compression has an impact 
on the effort that is required to access reference image data 
and at the same time delimits the rate-distortion (RD) trade-
off that can be achieved. If a limited channel bitrate and 
computational power of client devices are taken into 
account, encoding can be performed in a RD optimal 
manner with respect to the expected maximum transmission 
data rate (T) and decoding complexity (C). In this work we 
present a practical framework for parameter estimation for 
RDTC optimal encoding of image-based scene 
representations. 

 
Index Terms— RDTC optimization, IBR, compression 

 
1. INTRODUCTION 

 
With recent advances in image and video coding, efficient 

compression schemes for image-based scenes have emerged 
(see e.g. [1] for an overview). Additionally, techniques for 
streaming of such representations have been reported in the 
literature (e.g. [2]). For video sequences sequential play out 
of entire frames is dominant and therefore temporal and 
spatial dependency structures are known at encoding time. 
On the other hand, interactive navigation in image-based 
scenes requires random access to individual parts of the 
reference image data at decoding time. When only limited 
system resources, like computational power of the receiver 
device and transmission capacity, are available, traditional 
rate-distortion optimization is not appropriate anymore. I.e., 
in a remote navigation scenario with heterogeneous 
computational capabilities of user devices and different 
bitrate access there are strict requirements on the decoding 
time and the operational transmission data rate per virtual 
view. These constraints are typically not incorporated into 
RD optimization.  

The goal of this work is to develop a practical framework 
for the compression and interactive streaming of image-
based scene representations that allows parameter 
estimation and rate-distortion optimized encoding given 
constraints on the available computational resources at the 
decoder and the available channel capacity.  

The remainder of this paper is structured as follows. In 
Section 2 we give an overview of the considered system and 
measures used throughout the paper. In Section 3 we 
introduce the encoding parameter models while Section 4 
describes the optimization procedure. Section 5 discusses 
experimental results. Section 6 concludes the paper. 
 

2. SYSTEM OVERVIEW AND MEASURES 
 

Common image-based rendering (IBR) systems use image 
sequences that have been captured using calibrated 
video/still image cameras as the input to image analysis and 
view synthesis steps. In general, one can interpret spatially 
distributed camera positions within a static scene as motion 
trajectories of a single camera capturing a video sequence. 
Without loss of generality, we assume that the input to the 
considered system is such a calibrated video sequence. We 
perform offline compression on group of pictures (GOP) of 
size N images using motion compensated prediction on BxB 
pixel blocks. 2D motion compensated prediction of 
consecutive frames is performed using a scalar displacement 

d (in pixels) along epipolar lines which can be determined 
from the camera calibration.  

Pixel blocks can be encoded in intra, inter or skip mode. 
Intensity values in intra mode undergo a transform coding 
step (DCT) and H.263-like quantization. For the inter block 
mode a residual error after motion compensated prediction 
is encoded using the intra encoding scheme. For skip blocks 
only the scalar displacement is encoded. Virtual views are 
rendered from pixel blocks containing relevant pixel data. 
The requested block, as well as reference blocks in 
neighboring frames, are transmitted and decoded. This 
recursive procedure is continued until all reference blocks 
can be decoded using the intra mode decoding procedure. 
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The smallest decodable unit in our system is a single pixel 
block.  

The measures used to evaluate the performance of a 
specific compression approach with respect to scenario 
specific properties are summarized as follows [5]: 
• The Rate (R) is the mean number of bits required to store 

a pixel’s RGB values at the server. 
• The Distortion (D) is defined as the MSE between 

original and reconstructed pixels.  
• The Transmission data rate (T) is the mean number of 

bits that have to be transmitted per rendered pixel. 
• The Decoding complexity (C) of a given pixel is the 

mean number of pixels that have to be decoded to 
reconstruct the current pixel.  

T and C are strong measures for the user-perceived delay. T 
can be significantly larger than R as dependencies might 
have to be resolved. We identify four encoding parameters 
that have a major impact on the RDTC system measures [5]: 
• The quantization parameter q (deadzone quantizer). 
• The intra-ratio  which is defined as the ratio of intra 

encoded blocks in a GOP (except for blocks in the first 
frame which are all encoded in intra mode).  

• The skip ratio  which is the ratio of skip blocks among 
all blocks not encoded in intra mode.  

• The single reference ratio b which is signal dependent 
and is defined as the ratio of non-intra blocks that have 
one reference block in a neighboring frame. A single 
reference block refers to the case where the displacement 
is an integer multiple of the block size B. In all other cases 
the required prediction signal spreads across two blocks in 
the reference frame. b is defined with respect to the 
displacement field of a GOP as 

( )d
k

b p k B
∞

Δ
=−∞

= ⋅                           (1) 

Here, p d is the probability mass function of the scalar 
motion vector displacement.  

 
3. MODELING RDTC MEASURES  

 
We consider streaming of random virtual views using a 

sufficiently large pixel cache. To perform RDTC 
optimization on whole GOPs we present trained models that 
map the encoding parameters ( , ,q,b) to RDTC measures. 
In the following we assume the GOP size N and block size 
B to be fixed. b is calculated from displacement estimation 
on original frames and is assumed to be constant and 
independent from q. To train the models we take six sample 
points which we found to lie at ( , ,q) = (0,0,1), (0.4,0,1), 
(0,0.4,1), (0.6,1,1), (0,1,1), and (1,1,1).  

 
3.1. The rate-distortion (RD) model 
  
We choose an exponential model for the rate and 

interpolate R( , ) in the -  space:  
( ) ( )1 2(1 )

0 0( ) (0, ) (11) (0, ) 1 (1 )R , R R , - R ε ⋅ −β +ε ⋅βα β = β + β ⋅ − − α    (2) 

with      ( ) 3
0(0, ) (0 1) (0 0) (0 1) (1 )R R , R , - R , εβ = + ⋅ − β              (3) 

Where 1, 2, and 3 are trained from the samples. To extend 
(2) to be a function of the quantization parameter q, we use 
the -domain model introduced in [4]. First we calculate the 
distribution of transform coefficients at the sample 
positions. The relationship between the ratio of zeros (q) 
among the quantized transform coefficients and the mean 
rate R( , ,q) is expressed by a trained parameter  in the 
following equation: 

( ) ( )0 0( , , ) ( , , ) 1 ( ) ( , )R q R q q Rα β = κ α β ⋅ − ρ + α β .            (4) 
Here, R0( , ) is independent from the source and can be 

determined offline at the sample positions. The relationship 
between  and q is determined from the discrete probability 
distribution f(y) of the transform coefficients y: 

2y q

( q ) f ( y )
<

ρ =                              (5) 

Once  is known, R( , ,q) is determined by first 
extrapolating the coding samples using (4) and then 
applying (2).  

Again, depending on  and  we choose an exponential 
model for the distortion D( , ): 

 ( ) 1 2( (1 ) )
0( ) (1 1) (0, ) (11)D , D , D - D , e−α⋅ ε ⋅ −β +ε ⋅βα β = + β ⋅       (6) 

with       ( ) 3 ( 1)
0(0, ) (0 0) (0 1) (0 0)D D , D , - D , eε ⋅ β−β = + ⋅ .          (7) 

1, 2, and 3 are, again, trained from the samples. Similar to 
the rate model, we extend (6) to be a function of the 
quantization parameter q by using [4]: 

( )1 ( )( , , ) q
SD q D e−η⋅ −ρα β = ⋅                           (8) 

Here, DS is the variance of the source signal. Once  is 
known, D( , ,q) is determined by extrapolating the coding 
samples using (8) and then applying (6).  
 

3.2. The decoding complexity model (first view) 
 

Before the first view is transmitted and decoded at the 
beginning of a streaming session the client cache is empty. 
For simplicity we assume that the quantization parameter q 
does not have an impact on the decoding complexity. 
According to the analysis in [3] we use a probabilistic 
model to approximate the decoding complexity C for a 
virtual view request. The decoding probabilities am,n for a 
block at position (m,n) relative to the requested block can be 
expressed depending on , , and b:  

0                                                              
  1                                                   0          
1                                                   

m,n

if n m
if m,n
if m

a

>
=

≠

= ( ) ( ) ( )
( ) ( )

( ) ( )( )

1 1 1

1 1 1

2
1 1 1

0 0  

1 1 1

   1 1                

  1 1   else  

m ,n m ,n

m ,n m ,n

m ,n m ,n

,n

a b a

a a

a a b

− − −

− − −

− − −

=

⋅ − α ⋅ − ⋅ −

+ ⋅ − α ⋅ −

+ ⋅ ⋅ − α − α ⋅ ⋅ − α

(9) 

The mean decoding complexity Cb (b is a constant for a 
GOP) of a single random view access can now be written 
as: 
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( ) ( )( )
1

0 0 0

1 1 1
fN t

b f ,t t ,l f ,t
f t l

C , ,N a a a
N

−

= = =

α β = ⋅ + − ⋅ − β ⋅ − α
⋅ γ

(10) 

Here,  is the pixel render/decode ratio which is the mean 
number of requested pixels divided by the number of pixels 
that are actually decoded per requested block for a single 
access.  is a constant for a specific block size and rendering 
system.  

 
3.3. The transmission data rate model (first view) 
 
Again, assuming an empty cache prior to the view request, 

the weighted product of the mean rate and the mean number 
of pixels to be decoded per requested pixel is the mean 
transmission data rate and can be written as:  

( )
( ) ( )( )

1 1
b

b
R , ,q C , ,N

T , ,q,N
α β ⋅ α βα β =

− − α ⋅β
                   (11) 

Using skip encoded blocks which do not encode the 
residual error after motion compensated prediction leads to 
an imbalance between bits used for intra and inter encoded 
blocks compared to skip encoded blocks. The denominator 
in (11) considers this imbalance.  

 
3.4. The T/C models during operation (second views) 
 
The way a user navigates through a virtual environment is 

mainly characterized by smooth rotation and translation. 
When the first virtual view is entirely decoded at the client 
most of its data can be reused for nearby virtual views as 
many needed reference blocks reside in the client’s cache.  

Figure 1 illustrates this fact. Blocks marked with a small 
black square are requested and used for rendering while 
white blocks have to be transmitted and decoded. Hatched 
blocks are already in cache when the corresponding view is 
requested.  

 
Figure 1: Access patterns for rotational and translational 

movement in an image-based scene representation 
(approximation). (A) First view and (B)-(D) second views.  

 
In case (A) the dependency structure for a first virtual 

view is illustrated. Three blocks are requested and 
dependencies have to be resolved in exactly the same way 
as for the case with an empty cache prior request (arrows 
denote dependencies). When the user rotates (B), then the 
new virtual view consists of the previously requested blocks 
and additionally a block in frame three at position x=0 is 
needed which in turn can only be decoded with three further 
blocks to be processed. Case (C) and (D) show the same 
idea for translational motion. Note that, for the second and 

any further virtual view significantly fewer blocks have to 
be transmitted and decoded than for the first view.  

While the models for the rate R and distortion D remain 
the same for the first and consecutive views, the models for 
Cb and Tb have to be changed for smooth navigation. To 
determine Cs,b (subscript s stand for “second”) we modify 
(9) considering only those blocks, which are not in the 
cache when a second view is requested. This is an 
approximation of the mean decoding complexity of cases B 
to D in Figure 1. The probability that a certain block has to 
be decoded is approximated as: 

( ) ( )1 1

1                                                   0          
0 5                                                0 0
0 5 1 1        =
0                                 

m,n
m ,n

if m,n
. if m ,n

a
. a b if m n− −

=
≠ =

=
⋅ ⋅ − α ⋅ −

                 else  

    (12) 

Again, am,n reflects the probability that a block in a certain 
relative position (m,n) to the requested block is decoded if 
the cache is filled with reference data of a nearby virtual 
view. Cs,b is determined using (10) and (12). Ts,b is 
calculated according to (11) by replacing Cb with Cs,b. 

 
4. RDTC OPTIMIZATION 

 
Once the mapping from encoding parameters to RDTC 

measures is found we perform global numerical 
optimization. Though the models can be used with a variety 
of objective functions we choose to minimize the delay for 
second views (represented by Ts,b). Additionally we want to 
guarantee a maximum distortion Dmax and a maximum initial 
delay (represented by Tb<Tmax and Cb<Cmax) while Cs,b is 
unconstrained. This global minimization problem can now 
be written as: 

min Ts,b subject to 
maxD D≤ , maxR R≤ , b maxT T≤ ,  and b maxC C≤     (13) 

 
The following procedure is used to find optimal encoding 

parameters and intra/inter/skip blocks: 
1. Motion estimation on the original frames is performed 

and the motion vector field M and b are calculated. 
2. The GOP is encoded using M at the six sample positions 

zi=[ i i qi]T with i=1...6 producing values for R, D, Tb, Cb, 
Ts,b, and Cs,b. According to ( i, i) intra blocks and 
inter/skip blocks are distributed as follows: 
a. Intra encoding is performed for blocks introducing the 

biggest residual error after motion compensation. 
b. Inter mode encoding is assigned to the fraction of the 

remaining blocks introducing the biggest residual error 
after motion compensation. 

c. All other blocks are encoded in skip mode. 
3. An optimal parameter set zopt=[ opt opt qopt]T is found 

using numerical (constrained) optimization according to 
the objective function (13). 

4. According to ( opt, opt) intra blocks and inter/skip blocks 
are distributed over all blocks as described in step 2. 
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5. RESULTS 
 
We evaluate the proposed model-based optimization using 

a densely sampled image-based scene representation [5] 
assuming limited computational power of the client device 
and limited available bitrate. We set N=13,  is determined 
by the rendering system [5] and is set to 3.2, R and D are 
given for a whole GOP. Mean values for Tb, Ts,b, Cb and Cs,b 
are measured and calculated using a sufficiently large 
number of virtual views. 

Figure 2 (left) shows operational rate distortion plots for 
the first virtual view. The RD optimized and the INTRA 
encoded rate distortion curves are shown for comparison. 
The solid lines denote RD curves with respect to four T and 
C constraints produced by our algorithm. Dots show the 
corresponding measurements using the optimal parameter 
set zopt. For Tb 5bpp and Cb 5ppp pure RD optimization can 
achieve at most a PSNR of 28.5 dB while INTRA encoding 
achieves a much higher PSNR (introducing a much higher 
rate of course). RDTC optimization can trade-off these two 
extreme cases. 

Figure 2 (middle) and (right) show the result of an 
optimization for first and second virtual views using (13). 
For three different maximum distortion values Dmax the 
operational RT and RC plots are shown. For 35dB PSNR 
the minimum rate R is 0.8bpp while the transmission data 
rate Tb<Tmax is as high as 17.5 bpp. This point corresponds 
to a stream optimized using a rate distortion trade off solely 
(marked as “RD”). Using this configuration gives a Ts,b of 
1.7bpp. When increasing the rate R to 1.8 bpp then Tb<Tmax 
decreases to 6.5bpp while Ts,b increases to 2.3bpp. This 
configuration corresponds to independent encoding (marked 
as “INTRA”). For rates between 0.8bpp and 1.8bpp a trade-
off between R, Tb and Ts,b can be achieved. A similar 
reasoning can be applied to the decoding complexity.  

For a specific streaming scenario these results imply that 

depending on the available computational resources and 
channel capacity there is a trade-off between rate and 
distortion and a trade-off between the initial delay 
(representated by Ts and Cs) and the delay during smooth 
navigation (represented by Ts,b and Cs,b). 

 
6. CONCLUSION 

 
In this work we present a practical framework for 

parameter estimation for RDTC optimal encoding of image-
based scene representations. Trained models are given to 
estimate the rate, distortion, mean transmission data rate, 
and decoding complexity for the first virtual view of a 
streaming session as well as for succeeding views. The 
models allow optimizing offline compression with respect 
to scenario specific constraints in a remote navigation 
application using compressed image-based scene 
representations.  
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calculated from the model. Measurements using the corresponding optimized configuration are also shown as dots.  
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