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ABSTRACT

The masking property of human vision systems has been suc-
cessfully applied in various image/video applications. To in-
voke the spatial masking effect, it is important to design a
metric that effectively identi es the spatial activity of a re-
gion. This metric indicates which areas are more textured and
more artifacts can be masked. We review three widely used
metrics and evaluate their performance in context of lm con-
tent. We observe that these metrics have strong dependencies
on the brightness. More speci cally, for smooth areas with

lm grain, these metrics usually assign greater degrees of tex-
ture to the bright regions and lower degrees to dark ones. This
causes problems in the bright areas that are mistakenly iden-
ti ed as more textured than the dark areas. Utilizing the prop-
erty of lm grain, we explain the origin of this dependency
and propose a new spatial activity metric that removes the de-
pendency on the brightness. In our simulation, we use this
new metric in the rate control algorithm of a MPEG-2 video
encoder. The result shows more homogeneous lm grain in
the reconstructed pictures and improved visual quality.

Index Terms— Video signal processing, Noise

1. INTRODUCTION

The masking property of human vision systems has been suc-
cessfully applied in the areas of image/video quality assess-
ment, image/video compression and information hiding. The
masking occurs because of the inability of the human per-
ceptual mechanism to distinguish two signal components in
the same spectral, temporal, or spatial locality. Invoking the
masking effect at the right location requires accurate models
of the human visual system [1]. Signi cant progress has been
made in exploiting the masking effects. In a MPEG-2 refer-
ence software [2], the quantization stepsize of a macroblock
(MB) is modulated by the spatial activity to obtain high vi-
sual quality. In [3], a MB is characterized according to ho-
mogeneity, atness, various degrees of texture, and strength
of edges. Then adaptive quantization is applied based on its
activity class and the global scene complexity in a video en-
coder. In [4], the masking effect is utilized to decide where to
insert digital watermarking.

In general, the spatial activity metric is used to indicate
the degree of texture or atness of an area and can be used

to determine the amount of distortion or inserted information
to be allowed in the area. In this paper, we focus on how
to effectively measure the spatial activity of a block in the
presence of lm grain. The problem is to design a reliable
metric that effectively identi es the degree of texture of a re-
gion in a picture. In Section 2, we rst review three types of
existing spatial activity metrics and observe that in lm con-
tents they all strongly depend on the brightness. To be more
speci c, these metrics assume greater (lower) degrees of tex-
ture to bright regions and lower (greater) degrees to dark ones
even these areas share similar homogeneity or similar degrees
of atness. We use an example of a MPEG-2 encoder to ex-
plain that such metrics will introduce visible blockiness and
loss of grainy appearance in the bright regions. It also caused
inconsistent quality in similarly smooth areas with various
brightness. We explore the origin of the dependency on the
brightness using the property of lm grain and explain why
the existing metrics are not reliable for lm contents.

Film grain can be regarded as an additive, signal depen-
dent noise. It is a technical effect used by many cinematogra-
phers to transmit a certain mood and tone to the movie and it
is clearly noticeable in many high-de nition movies. Hence it
is important to preserve them for the subjective quality. Based
on the property of the lm grain, we develop in Section 3 our
new metric that removes this dependency. We simulate this
metric and use it in the rate control algorithm of a MPEG-2
video encoder. The result shows more preserved lm grain
and therefore improved visual quality for pictures with lm
grain. We discuss our future work and conclude our paper in
Section 4.

2. EXISTING METRICS

In this section, we review three widely used types of metrics:
(1) variance-based; (2) gradient-based; and (3) DCT-based
metrics [5]. The goal of these metrics is to distinguish at
and homogeneous regions, where distortion is more visible to
human eyes, from busy and textured areas, where distortion
is masked and less visible. All metrics are calculated on a
16x16 MB basis.
Variance-based metric This approach measures the spa-

tial activity using the variance of luminance. A representative
method is the one used in the rate control algorithm of the
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Fig. 1. Frame 416 from “Pouring Liquids” with two marked
at regions.

MPEG-2 reference software [2]:

ACTvar = 1 + min
i=1,2,3,4

(vari), (1)

where vari is the variance for ith 8x8 subblock.
Gradient-based metric This approach considers the gra-

dients. One metric is described in [6]:

ACTgra =
15∑

i=0

15∑

j=0

max
n

(gradi,j,1, · · · , gradi,j,4), (2)

where gradi,j,n is a local gradient computed by one of four
5x5 directional high-pass lters at (i, j) [6].
DCT-based metric This type of approach uses the DCT

coef cients of luminance values. One such metric normalizes
the AC coef cients by the DC coef cient [5]:

ACTDCT =
1

16× 16

15∑

i=0

15∑

j=0

F 2(i, j)
F 2(0, 0)

− 1. (3)

where F (i, j) is the DCT coef cient of frequency (i, j).

2.1. Metric Evaluation

In general, the spatial activity metric is used to indicate at
which quality a MB should be compressed [2], [6], and more
distortion or inserted information is allowed in the block with
higher spatial activity because of the masking effect. For ex-
ample, in a perceptual video encoder the smooth areas are ex-
pected to be compressed with ner quantization and the tex-
tured ones with coarser quantization. In the following, we
evaluate how these metrics measure spatial activity of pic-
tures with lm grain. We further use ACTvar as an example
to evaluate how it performs when it is used in the rate control
algorithm of a MPEG-2 encoder. The problems we describe
for this example also apply to other spatial activity metrics.

We take a public high-de nition sequence 1, “Pouring Liq-
uids” (1920× 1080, 24 fps, progressive), for our illustration

1While the advantage of this algorithm is more evident in other sequences
with stronger lm grain, we only present results in this paper for “Pouring
Liquids” because of copyright restrictions.
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Fig. 2. (a) ACTvar, (b) ACTgra, and (c) ACTDCT for the at
regions.

purpose. This sequence contains lm grain and is overall at.
Fig. 1 shows Frame 416 in it. We plot for this frame ACTvar ,
ACTgra, and ACTDCT in Fig. 2 for the masked at regions
versus the average luminance of the corresponding MBs. We
observe that the metrics strongly depend on the brightness and
have big dynamic ranges despite the regions share similarly in
visual atness.

Assuming we apply the MB-level quantization stepsize
modulation used in the MPEG-2 reference software [2] as

w =
2×ACTvar + ACTvar

ACTvar + 2×ACTvar

, (4)

where w is the weight on the quantization stepsize, and ACTvar

is the average spatial activity measured by the variance. The
particular picture quality and rate of the encoder is achieved
by selecting a speci c quantizer scale Qi,m for each MB m
in picture i. This value is calculated for each MB by combin-
ing a picture global quantization scale Q i with the perceptual
weighting factor wi,m:

Qi,m = wi,m ×Qi, (5)

where wi,m is the weight for MB m in picture i. This percep-
tual modulation factor aims to obtain the same visual quality
for each encoded MB in a picture. For the picture we con-
sider, ACTvar can be as small as 4 in the dark masked re-
gion and as big as 15 in the bright masked region. Using
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(a) (b)
Fig. 3. (a) A block from the bright masked area from Frame 416 of
“Pouring Liquids” and Qi,m = 8. (b) A block from the dark masked
area and Qi,m = 6.

(4) and ACTvar = 7.8, w for a MB with ACTvar = 4 and
ACTvar = 15 will be 0.81 and 1.24, respectively. This great
weighting factor gap is very likely to cause visible artifacts,
such as blockiness or blurness, in the MBs where ACTvar are
big.

We encode the sequence at 14 Mbps using this encoder.
We select a patch from each masked area of Frame 416, where
Qi,m = 6 for the dark patch and Qi,m = 8 for the bright one,
for illustration purpose in Fig. 3. We observe that the dark
patch appears closer to the original and the bright patch sees
blockiness patterns2. Since the lm grain construction is very
important for the subjective picture quality, especially for the
movie industry [7], a more intelligent encoder should have
provided similar quality in both patches since they appear to
be similarly at. This imposes a challenge on the spatial ac-
tivity metric that it should assign similar values to regions
with similarly visual smoothness. In the next, we explore the
origin of the dependency on the brightness using the prop-
erty of lm grain and explain why the existing metrics are not
reliable for lm contents.

2.2. Explanation from Film Grain Models

We observe in the above that the existing metrics strongly de-
pend on the brightness in the context of lm contents. One
reason of this strong dependency is the presence of lm grain,
a random texture generated during the process of lm devel-
opment. Film grain could be regarded as an additive, signal
dependent noise, which differs in size, shape and intensity
depending on the lm stock, lightening condition and devel-
opment process. Studies in [8, 9] show that the intensities of

lm grain are highly correlated to pixel intensities. In [9], it
shows that lm grain can be modeled as:

g(i, j) = f(i, j) + f(i, j)γ ∗ n(i, j), (6)

where g(i, j) and f(i, j) are the observed and noise-free pixel
value at location (i, j), respectively, γ is a constant given the

lm stock and shooting condition, and n(i, j) is a zero mean
normal distributed noise. Usually γ is between 0.3 - 0.7, and
in most cases around 0.5. For a smooth M ×N block where

2The difference may not be clear in the printout. It will be more evident
when we watch this on a computer monitor or a 1080p TV screen.

f(i, j) is close within a block, we approximate (6) as:

g(i, j) = f(i, j) + f
γ × n(i, j), (7)

where f = 1
M×N

∑M
i=1

∑N
j=1 f(i, j) ≈ f(i, j). In the at

areas, f(i, j) is almost a constant and the strength in ACTvar

is mainly from the lm grain, which strongly correlates with
the brightness decided by f(i, j). Because existing metrics
do not consider the effect of lm grain, they all show strong
correlation with the brightness and are not effective for lm
contents. This matches our observation in Fig. 2.

3. A NEW SPATIAL ACTIVITY METRIC

In Section 2, three types of spatial activity metrics are evalu-
ated. We observe that they strongly correlates to the bright-
ness. We provide an example where ACTvar is used in the
rate control algorithm of a MPEG-2 encoder and visible arti-
facts exist in the reconstructed pictures. We explain the origin
of the dependence using the property of lm grain. We then
develop a new metric that considers the effect of lm grain.
Using ACTvar as an example, we explain how we eliminate
the dependency. The methodology can be applied to other
metrics.

Assuming n(i, j) is independent of f(i, j) in (6), the vari-
ance of g(i, j) becomes:

σ2
g = σ2

f + f
2γ × σ2

n, (8)

where σ2
g , σ2

f and σ2
n are the variance for g(i, j), f(i, j) and

n(i, j), respectively. For the grain-free content, σ 2
n is negligi-

ble and σ2
g represents the variation within a MB and can be a

good measure for the spatial activity. For the grainy content,
we need remove the effect of the lm grain when computing
the spatial activity metric, as the human vision system does,
and calculate the variance of noise-free signal in order to ob-
tain a good measure:

σ2
f = σ2

g − f
2γ × σ2

n. (9)

Note that f
2γ

describes the dependency of the lm grain on
the signal and σ2

n describes the noise strength. We denote

σ2
grain = f

2γ × σ2
n.

3.1. Parameter Estimation

In the lm content, especially for high resolution video, there
usually exists a large amount of blocks that are at or almost

at. The variances of these blocks are mainly contributed by
lm grain, i.e, σ2

f ≈ 0, σ2
g ≈ σ2

n. For the at blocks with
similar brightness, the characteristic of the grain are almost
the same, which result in very close σ2

g that is smaller than the
variance of textured MBs. As a consequence, the histogram
of the variance usually has a peak at the beginning.
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Fig. 4. (a) The histogram of ACTvar for a luma range of 70-79;
(b) curve tting for σ2

grain; and (c) ACT new
var for Frame 416 from

”Pouring Liquids”.

(a) (b)
Fig. 5. (a) A block from the bright masked area from Frame 416 of
“Pouring Liquids” and Qi,m = 7. (b) A block from the dark masked
area and Qi,m = 7.

Therefore we introduce a histogram-based method to es-
timate the grain intensity. The blocks are rst classi ed into
m groups according to its brightness range. For each group,
we calculate the histogram of variances and identify the rst
peak σ2

peak,i , as in Fig. 4(a). In Fig. 4(b), using σ2
peak,i from

all brightness ranges and assuming γ = 0.5 in (8), we derive
σ2

grain as a linear function of the brightness using the linear
regression method. To eliminate the effect of lm grain, we
deduct it from the existing metric:

ACT new
var = ACTvar −m(σ2

grain). (10)

In our approach, we set m(σ2
grain) = σ2

grain − 1 for simplic-
ity.

3.2. Simulation Results

We run the same simulation as we did in Section 2 and the
resulted reconstructed patches are shown in Fig. 5. We ob-
serve from Fig. 4(c) that the new metric ACT new

var provides
a smaller dynamic range for the smooth areas. Under this
new metric, ACT new

var = 1 and Qi,m = 7 for both patches.
Because of the same quantization scale, both patches are en-
coded at similar quality and have well preserved the lm grain.

4. DISCUSSIONS

In this paper, we review existing spatial activity metrics and
observe that for lm contents they all show strong depen-
dency on the brightness. More speci cally, these metrics as-
sume greater (lower) degrees of texture to bright regions and
lower (greater) degrees to dark ones even these areas have
similar degrees of atness. We use an example of a MPEG-2
encoder to illustrate that such metrics introduce visible block-
iness and loss of grainy appearance in the bright regions. We
also show that the encoder using such metrics causes incon-
sistent quality in similarly smooth areas with various bright-
ness. Using the concept of lm grain, We explore the origin
of this dependency and propose a new spatial activity metric
that removes the dependency on the brightness. Our simula-
tion results show that the new metric provides close values to
the areas with similar degrees of atness despite the variation
in the brightness. The encoding results show a more homo-
geneous and improved visual quality for the same content.
Therefore this new spatial activity metric allows us to suc-
cessfully exploit the spatial masking effect in contents with

lm grain.
In this paper, we assume a linear relation between bright-

ness and grain intensity. However, in practice, we observe that
in some cases the grain intensity would drop after brightness
reaches a considerable high level. It is our future work to use
a more accurate model to derive the spatial activity metric.
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