
 Buffer Constrained Proactive Dynamic Voltage Scaling for Video Decoding Systems

Emrah Akyol, Mihaela van der Schaar
{eakyol, mihaela}@ee.ucla.edu

Electrical Engineering, University of California, Los Angeles, CA, USA

ABSTRACT
Significant power savings can be achieved on
voltage/frequency configurable platforms by dynamically
adapting the frequency and voltage according to the workload
(complexity). Video decoding is one of the most complex tasks
performed on such systems due to its computationally
demanding operations like inverse filtering, interpolation,
motion compensation and entropy decoding. Dynamically
adapting the frequency and voltage for video decoding is
attractive due to the time-varying workload and because the
utility of decoding a frame is dependent only on decoding the
frame before the display deadline. Our contribution in this
paper is twofold. First, we adopt a complexity model that
explicitly considers the video compression specifics to
accurately predict execution times. Second, based on this
complexity model, we propose a dynamic voltage scaling
algorithm that changes effective deadlines of frame decoding
jobs. We pose our problem as a buffer-constrained optimization
and show that significant improvements can be achieved over
the state-of-the-art dynamic voltage scaling techniques without
any performance degradation.
Index Terms—Video decoding, dynamic voltage scaling,
complexity modeling, energy saving

1. INTRODUCTION
Power-frequency reconfigurable processors are already
available in wireless and portable devices. Recently, hardware
components are being designed to support multiple power
modes that enable trading off execution time for energy
savings. For example, some mobile processors can change the
speed (i.e., frequency) and energy consumption at runtime [1].
Significant energy savings can be achieved by adapting the
voltage and processing speed for the tasks where early
completion does not provide any gains. The energy spent on
one process can be reduced by decreasing the voltage, which
will correspondingly increase the delay [2].The main goal of all
DVS algorithms is utilizing this energy-delay trade off for tasks
whose jobs’ completion times are immaterial as long as they
are completed before their processing deadline An example is
real-time video decoding, where an early completion of frame
decoding does not provide any benefit as long as the display
deadline for that frame is met. A DVS algorithm essentially
assigns the operating level (i.e., power and frequency) for each
job given the estimated cycle requirement (i.e., the required
complexity) and the job deadline [2].
 Recently, several researchers have addressed the problem of
efficient DVS for multimedia applications. In [3], rather than
using the worst case complexity, a worst case estimate

satisfying a statistical guarantee determined based on the online
profiled histogram of the previous frames is used for the
frequency assignment of each job. Also, an intra-job DVS is
proposed by gradually increasing the frequency (speed) within
the job, while monitoring the instantaneous cycle demands. For
other works on DVS, see [7] and the references there in.
 For video decoding, a job represents conventionally the
decoding of a frame. Based on the frame rate, there is a worst-
case design parameter, that denotes the amount of time
available for processing a job. Depending on the time-varying
characteristics of the video content, the deployed compression
algorithm and encoding bit-rate, not every job needs the entire

 to complete its execution.

Start Job 1 Start Job 2

 JOB 1

Finish Job 1

JOB2

JOB 3

 JOB 1 JOB 2 JOB 3

 JOB 1 JOB 2

JOB 3

Start Job 3

Finish Job 1

SLACK

Finish Job 2

Finish Job 2
Start Job 3

Finish Job 1
Start Job 2

Finish Job 3

Finish Job 2

Finish Job 3

Finish Job 3
Start Job 2 Start Job 3

Tmax Tmax Tmax

T1 T2 T3

T1 T2 T3

T1 T2 T3

Deadline 1 Deadline 2 Deadline 3

Figure 1: The top panel is no-DVS, middle panel is conventional DVS and
the bottom panel is proposed DVS method.

As shown in the top panel of Figure 1, the first job needs T1
time units whereas the second job needs T2 time units. The key
idea behind existing adaptive systems is to adapt the operating
frequency such that the job is processed exactly in time
units (see the middle panel of Figure 1). Clearly, this shows the
reactive and greedy nature of the existing adaptation process –
the resources are optimized within a job for a fixed time
allocation . However, the DVS gains can be substantially
improved when the allocated times (T1, T2, and T3) and
operating levels (power-frequency pairs) are optimized jointly
(inter-job optimization) as shown in the bottom panel, Figure 1.

Assume we have three jobs with complexities
, , . From now on, we

use the term complexity to represent the number of execution
cycles. With “no-DVS”, processing is performed considering
the worst case scenario: at the maximum frequency for each job

and corresponding maximum power . For
“conventional DVS”, frequencies are adjusted to finish each

VI - 4771-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

job just-in-time, , , . If
we assume a power-frequency relationship of [2] then
the power spent on the various jobs will be

, , .For the “proactive
optimization” with modified deadlines, the total complexity is

, and frequencies are kept
constant: . The total energy
spent on the group of jobs equals .
Hence, the total energy spent for the “no-DVS” case
is , for the “conventional DVS” equals

 and for the “proactive DVS” case equals
, where . In this

example, conventional DVS provides 35% energy reduction
with respect to no-DVS, whereas proactive DVS provides 66%
energy reduction with respect to no-DVS.

As mentioned before, none of the previous studies consider
proactively changing the time allocations and frequency;
instead, they aim at adapting the frequency to fixed time
allocations in a greedy fashion. We propose a novel DVS
algorithm that adapts jobs deadlines by buffering the decoded
frames before display. By utilizing this post-decoding buffer,
we study the DVS problem into the context of the buffer
constrained optimization problem, similar to well studied
problems of rate-control with buffer constraints. We also
propose an optimal and several low-complexity suboptimal
solutions for the buffer-constrained DVS problem.

 This paper is organized as follows: Section II describes the
compression aware job definitions. The proposed DVS
algorithms are explained in Section III. Section IV presents the
comparative results and Section V concludes the paper.

2. COMPRESSION AWARE JOB DEFINITIONS

The state of the art video encoders deploy complex temporal
predictions from both past and/or future frames which must be
decoded much before their display deadline. Hence, each frame
has a decoding deadline that is determined by the temporal
decomposition structure (temporal dependencies). This
deadline is different from the play-back (display) deadline
determined by the frame rate fr. Let be the set of frames
for which frame n is used as a reference. Then, the display and
decoding deadlines for frame n can be written:

,

.

Unlike previous work that considers the decoding of each
individual frame as a task, we combine frames having the same
decoding deadline (i.e., frames that are dependently encoded)
into one job of the decoding task. We define every job based on
three parameters: , where

: Decoding deadline of job j,

: Estimated number of cycles that job j consumes
on a specific platform, , see eg.[4] for details.

: Number of decoded frames when job j finishes,

Figure 2: Directed acyclic dependence graphs for a) Dependencies between
I-B1-B2-P1-B3-B4-P2 frames b) Hierarchical B Pictures, I-B1-B2-B3-P

 In predictive coding, frames are encoded with
interdependencies that can be represented by a directed acyclic
dependence graph (DAG). Examples are shown in Figure 2 for
two different GOP structures: the conventional I-B-B-P-B-B-P
and the hierarchical B pictures. Decoding frame I is a job and
decoding frames P1 and B1 jointly represent another job.
Prediction structures using hierarchical B pictures as in the
H.264/AVC standard lead to the following sizes (),
complexities (), and deadlines (): the first job represents the
decoding of the I-frame () the second job
consists of decoding frames P, B1 and B2
() and the last job is the decoding of frame
B3 (). It is important to notice that, both
the second and the third job can be viewed from a high level
perspective as decoding a B frame. However, the job
parameters are substantially different, thereby highlighting the
need for encoder-specific complexity estimation.

3. BUFFER CONSTRAINED DVS

Let us assume there is a discrete set of operating levels with
corresponding frequency and power levels which can be used
in our frequency/voltage adaptation. Each level has a different
power consumption and different frequency

. Assume there
are a total of jobs with deadlines

,sizes
and complexity estimates . The DVS
problem attempts to find the set of operating levels (power and
frequency tuple) for each job, as follows:

 DVS Problem:

find (energy consumption)

s.t. (delay constraints)

Figure 3: Proposed buffer controlled DVS

We propose to use a post-decoding buffer between the display
device and the decoding platform as shown in Figure 3. The
operating level of the job j (p-f tuple) is determined considering

B1

B2

P

I B3

Job 1 Job 2 Job 2

I

P1

P2

B1

B2 B3 B4

Job 1 Job 2 Job 3 Job 4 Job 5

DECODING DISPLAY
BUFFER JOBS

 DISPLAY

Display rate, fr

VOLTAGE/FREQ.
CONTROL

Deadline, d(j)

Complexity, c(j)

Size, s(j)
j=1,...,M

Buffer occupancy, B(j)

Frequency, f(j)

Power, p(j)

VI - 478

the parameters of M jobs and buffer occupancy B(j) . For each
job, the complexity estimates are updated and based on the
buffer occupancy, a new operating level is assigned. We define
the buffer occupancy for job as recursively

 and

where fr denotes the frame rate, ,the initial state of the
buffer, depends on the initial playback delay(which may be
zero if no delay is tolerable), and is the time that job j
takes which can be written as .Then, the DVS
problem becomes the problem of minimizing total energy under
buffer constraints.

Buffer Constrained DVS Problem:

find (energy consumption)

s.t. (buffer constraints)

We need to guarantee the buffer never underflows, such that no
frame freeze occurs. Also, the buffer state can not grow
indefinitely because it is a finite physical buffer. If we assume
the maximum buffer size is , we need to guarantee that
the buffer occupancy at any state is lower than .

The optimal solution can be found by dynamic programming
methods, which explicitly consider every possible frequency-
power pair for each job and check the buffer state for overflow
or underflow. A trellis is created with given complexity
estimates of the job and possible power-frequency assignments.
At every stage, the paths reaching the same buffer occupancy at
a higher energy cost are pruned.

Although there is a finite number of operating levels,
intermediate operating levels are achievable by changing the
frequency/power within the job similar to the approach in [2]
[3]. Figure 4 shows the energy-delay curve for jobs j and j+1
Intermediate levels are achieved by frequency changes within
the job. Greater values of the slope means greater energy spent
with smaller delay yielding a higher frequency-power choice.

Figure 4: Operational Energy-Delay curve of jobs j and j+1 with D,E pairs

corresponds to different frequency-power levels of the processor.

Proposition I: If we neglect the transition cost from one
frequency to another, the frequency change within the job
corresponds to piece-wise bilinear interpolation power-
frequency points as shown in Figure 4. Proof: See [7].

Proposition II: The slope between two E-D points only
depends on the power/frequency values but not on
complexities. Proof: See [7].

Proposition III: From a set of given power-frequency
points, only the ones that generate a convex set of E-D points
should be used for proactive DVS. Proof: See [7].

Hence, before any optimization, the power-frequency values
which do not provide complex E-D points should be pruned,
i.e., a convex hull of E-D points, from a possible set of E-D
points should be generated. Since the slopes are identical for all
jobs (Proposition II), this pruning is done only once for all jobs.

Proposition IV: The optimal operating level assignment
will result in equal slopes for every job. Proof: See [7].

Buffer constrained DVS problem is analogous to buffer
constrained R-D optimal bit allocation problem [5]. Hence,
similar to rate (buffer)-control problems in video transmission,
we aim to keep the buffer state in equilibrium () for a
group of W jobs. Then, using Propositions II and IV, the
optimal frequency considering a look-ahead window of W jobs:

 Algorithm 1 performs the delay-energy optimization for every
job considering a look ahead window of W jobs.

Table I: Algorithm 1
1. Choose the set of frequency-power tuples

which creates convex E-D points

2. For each job (),find the
optimum frequency

3. Proceed to job (Step 2)

A fast extension of this algorithm, Algorithm 2, is to perform
this optimization and assign the same frequency for jobs
and re-perform this optimization only when the buffer level
gets lower or higher than the specified thresholds.

Table II: Algorithm 2

1. Choose the set of frequency-power tuples
which creates convex E-D points

2. For each look-ahead window of size
3. For job within the window find the

optimum frequency

4. Execute the job with the assigned

frequency and check buffer state

5. If or change the
frequency (Step 3) else continue with
same frequency (Step 4)

 A least complex approximation, Algorithm 3, is changing the
frequency only when there is a risk of overflow or underflow.

Table III: Algorithm 3

1. Choose the set of frequency-power tuples
which creates convex E-D points.

2. For job find the optimum frequency

3. Execute the job with the assigned
frequency and check the buffer state

4.

 Set . If or change
 the frequency (Step-2)else continue

with same frequency(Step 3)

x

x

x

x
x

x

D1,E1

D2,E2

D3,E3

D4,E4

D5,E5 D6,E6

x

x

x
x

D2,E2

D3,E3

D4,E4

D5,E5

D1,E1 x

x

Energy

Delay

D6,E6 Job

Job

VI - 479

4. COMPARATIVE RESULTS

In this section we compare the proposed DVS method to
conventional DVS methods. We used four different test
sequences, foreman, mobile, coastguard and silence, 256
frames at CIF resolution and frame rate 30fps, encoded at two
different compression specifications (low complexity and high
complexity), and decoded at 2 different rates, 512kbps and
1024kbps. To obtain statistically meaningful results, we
concatenated the resulting 16 videos in 12 different orders,
resulting in a set of 12 long videos with 3072 frames each. We
present the average results of 12 videos with different decoding
traces. Power and frequency values are taken from [6] .

0 500 1000 1500 2000

60

80

100

120

140

160

180

200

220

number of jobs

fr
eq

eu
nc

y
in

 M
hz

0 500 1000 1500 2000
0

2

4

6

8

10

12

14

16

number of jobs

bu
ff

er
 o

cc
up

an
cy

 in
 n

um
be

r
of

 f
ra

m
es

Figure 5 : Frequency assignment (a) and buffer fullness (b) for Algorithm 1

In the following, we compare the fast algorithms, Algorithm
1, 2, and 3 in terms of the buffer utilization, the number of
frequency transitions and energy savings. The highest number
of frequency changes occurs in Algorithm 1 compared to other
algorithms whereas the least buffer level variation is observed,
as shown in Figure 5. Algorithm 3 is the most conservative in
terms of the number of frequency changes and as expected
provides the least energy savings among the proposed three
algorithms. The performance of Algorithm 2 is between that of
Algorithm 1 and 3 in the sense of energy savings, buffer
utilization, and the number of frequency changes.

0 500 1000 1500 2000

60

80

100

120

140

160

180

200

220

number of jobs

fr
eq

eu
nc

y
in

 M
hz

0 500 1000 1500 2000
0

2

4

6

8

10

12

14

16

number of jobs

bu
ff

er
 o

cc
up

an
cy

 in
 n

um
be

r
of

 f
ra

m
es

Figure 6: Frequency assignment (a) and buffer fullness (b) for Algorithm 3

As the buffer size and the look-ahead window size
increases, energy savings of the proposed buffer controlled
DVS algorithms increase as expected intuitively. The gap
between the energy savings of Algorithm 1 and Algorithm 3
decrease as the buffer size gets large. This result shows the
trade off between the buffer size, energy savings and number of
frequency changes. If the buffer size is large, energy savings
close to the savings of Algorithm 1 can be achieved with less
frequency transitions using Algorithm 3. Conversely, when the
buffer size is small, the difference in energy savings of
Algorithm 3 and Algorithm 1 can be significant. We also
simulated the conventional DVS method in two ways. The first

method, utilizes a statistical worst case complexity estimate
denoted here as Conventional [3]. Another method is the
optimum conventional DVS for benchmark purposes which is
named as Conventional Lower Bound. We assumed the
complexities of each job are known apriori and find the
optimum theoretical DVS gain achievable by conventional
DVS methods. Optimal Proactive is the optimal dynamic
programming based algorithm assuming an exact knowledge of
complexities before the actual decoding is performed. Optimal
Proactive DVS shows the limit of energy savings given the
buffer size.

Table IV: Comparison of different DVS algorithms in terms of scaled
energy spent and number of frequency changes per job. Benchmark (%100
energy spent case) is no-DVS.

 Scaled
Energy

freq.
changes

Scaled
Energy

#of freq.
changes

Conv. Bound 45.21 1519.8 45.21 1519.8

Conventional 60.43 1688.5 60.43 1688.5
Optimal Proactive 36.93 1753.7 36.63 1747.3
Algorithm 1 40.36 655.91 40.23 545.67
Algorithm 2 40.60 161.0 40.58 82.75
Algorithm 3 42.35 121.17 41.66 57.92

As the results show, all of the proposed methods
significantly out-perform the conventional algorithms in terms
of energy savings and the number of frequency changes. Note
that, the proposed method provides energy savings exceeding
the upper bound of the conventional methods which is based
on the exact knowledge of the complexity. This result clearly
shows the superiority of the proposed proactive DVS method.

5. CONCLUSION

 In this paper we proposed a novel DVS method for video
decoding which achieves energy savings exceeding the upper
bound of the conventional DVS methods. We explored the
fundamental energy vs. delay trade-off for video decoding
systems and proposed new trade-offs such as buffer size vs.
energy savings and the number of frequency changes that the
platform can handle.

6. REFERENCES
[1] Intel Inc, “Intel XScale Technology,” Available online

http://www.intel.com/ design/intelxscale
[2] T. Ishihara and H. Yasuura, “Voltage scheduling problem for

dynamically variable voltage processors,” in Proceedings of Intern.
Sym. on Low-Power Electronics and Design. Monterey, CA 1998.

[3] W. Yuan et.al., “GRACE: Cross-layer adaptation for multimedia
quality and battery energy,” IEEE Trans. on Mobile Comp.,to
appear

[4] M. van der Schaar and Y. Andreopoulos, “Rate-distortion-
complexity modeling for network and receiver aware adaptation,”
IEEE Trans. on Multimedia, vol. 7, no. 3, pp. 471-479, June 2005.

[5] A. Ortega, K. Ramchandran, and M. Vetterli, “Optimal trellis-
based buffered compression and fast approximations,” IEEE Trans.
on Image Processing, Vol. 3, No. 1, Jan. 1994.

[6] A. Sinha and A. P. Chandrakasan, “Jouletrack: A web based tool
for software energy profiling,” in Proc. IEEE/ACM DAC, 2001.

[7] E. Akyol, M. van der Schaar, “Complexity model based proactive
dynamic voltage scaling for video decoding systems ”, IEEE Trans.
on Multimedia, to appear 2007

VI - 480

