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ABSTRACT 
Significant power savings can be achieved on 
voltage/frequency configurable platforms by dynamically 
adapting the frequency and voltage according to the workload 
(complexity). Video decoding is one of the most complex tasks 
performed on such systems due to its computationally 
demanding operations like inverse filtering, interpolation, 
motion compensation and entropy decoding. Dynamically 
adapting the frequency and voltage for video decoding is 
attractive due to the time-varying workload and because the 
utility of decoding a frame is dependent only on decoding the 
frame before the display deadline. Our contribution in this 
paper is twofold. First, we adopt a complexity model that 
explicitly considers the video compression specifics to 
accurately predict execution times. Second, based on this 
complexity model, we propose a dynamic voltage scaling 
algorithm that changes effective deadlines of frame decoding 
jobs. We pose our problem as a buffer-constrained optimization 
and show that significant improvements can be achieved over 
the state-of-the-art dynamic voltage scaling techniques without 
any performance degradation.   
Index Terms—Video decoding, dynamic voltage scaling, 
complexity modeling, energy saving 

1. INTRODUCTION 
Power-frequency reconfigurable processors are already 
available in wireless and portable devices. Recently, hardware 
components are being designed to support multiple power 
modes that enable trading off execution time for energy 
savings. For example, some mobile processors can change the 
speed (i.e., frequency) and energy consumption at runtime [1]. 
Significant energy savings can be achieved by adapting the 
voltage and processing speed for the tasks where early 
completion does not provide any gains. The energy spent on 
one process can be reduced by decreasing the voltage, which 
will correspondingly increase the delay [2].The main goal of all 
DVS algorithms is utilizing this energy-delay trade off for tasks 
whose jobs’ completion times are immaterial as long as they 
are completed before their processing deadline An example is 
real-time video decoding, where an early completion of frame 
decoding does not provide any benefit as long as the display 
deadline for that frame is met. A DVS algorithm essentially 
assigns the operating level (i.e., power and frequency) for each 
job given the estimated cycle requirement (i.e., the required 
complexity) and the job deadline [2]. 
    Recently, several researchers have addressed the problem of 
efficient DVS for multimedia applications. In [3], rather than 
using the worst case complexity, a worst case estimate 

satisfying a statistical guarantee determined based on the online 
profiled histogram of the previous frames is used for the 
frequency assignment of each job. Also, an intra-job DVS is 
proposed by gradually increasing the frequency (speed) within 
the job, while monitoring the instantaneous cycle demands. For 
other works on DVS, see [7] and the references there in. 
     For video decoding, a job represents conventionally the 
decoding of a frame. Based on the frame rate, there is a worst-
case design parameter, that denotes the amount of time 
available for processing a job. Depending on the time-varying 
characteristics of the video content, the deployed compression 
algorithm and encoding bit-rate, not every job needs the entire 

 to complete its execution.  
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Figure 1:  The top panel is no-DVS, middle panel is conventional DVS and 
the bottom panel is proposed DVS method. 

As shown in the top panel of Figure 1, the first job needs T1 
time units whereas the second job needs T2 time units. The key 
idea behind existing adaptive systems is to adapt the operating 
frequency such that the job is processed exactly in time 
units (see the middle panel of Figure 1). Clearly, this shows the 
reactive and greedy nature of the existing adaptation process –
the resources are optimized within a job for a fixed time 
allocation . However, the DVS gains can be substantially 
improved when the allocated times (T1, T2, and T3) and 
operating levels (power-frequency pairs) are optimized jointly 
(inter-job optimization) as shown in the bottom panel, Figure 1. 

Assume we have three jobs with complexities 
, , . From now on, we 

use the term complexity to represent the number of execution 
cycles. With “no-DVS”, processing is performed considering 
the worst case scenario: at the maximum frequency for each job 

and corresponding maximum power . For 
“conventional DVS”, frequencies are adjusted to finish each 
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job just-in-time, , ,  . If 
we assume a power-frequency relationship of  [2] then 
the power spent on the various jobs will be 

, , .For the “proactive 
optimization” with modified deadlines, the total complexity is 

, and frequencies are kept 
constant: .  The total energy 
spent on the group of jobs equals . 
Hence, the total energy spent for the “no-DVS” case 
is , for the “conventional DVS” equals  

 and for the “proactive DVS” case equals 
, where . In this 

example, conventional DVS provides 35% energy reduction 
with respect to no-DVS, whereas proactive DVS provides 66% 
energy reduction with respect to no-DVS. 

As mentioned before, none of the previous studies consider 
proactively changing the time allocations and frequency; 
instead, they aim at adapting the frequency to fixed time 
allocations in a greedy fashion. We propose a novel DVS 
algorithm that adapts jobs deadlines by buffering the decoded 
frames before display. By utilizing this post-decoding buffer, 
we study the DVS problem into the context of the buffer 
constrained optimization problem, similar to well studied 
problems of rate-control with buffer constraints. We also 
propose an optimal and several low-complexity suboptimal 
solutions for the buffer-constrained DVS problem.  

 This paper is organized as follows: Section II describes the 
compression aware job definitions. The proposed DVS 
algorithms are explained in Section III.  Section IV presents the 
comparative results and Section V concludes the paper.  

2. COMPRESSION AWARE JOB DEFINITIONS  

The state of the art video encoders deploy complex temporal 
predictions from both past and/or future frames which must be 
decoded much before their display deadline. Hence, each frame 
has a decoding deadline that is determined by the temporal 
decomposition structure (temporal dependencies). This 
deadline is different from the play-back (display) deadline 
determined by the frame rate fr. Let be the set of frames 
for which frame n is used as a reference. Then, the display and 
decoding deadlines for frame n can be written: 

,                                                                                                                     

.                                                              

Unlike previous work that considers the decoding of each 
individual frame as a task, we combine frames having the same 
decoding deadline (i.e., frames that are dependently encoded) 
into one job of the decoding task. We define every job based on 
three parameters:   , where 

: Decoding deadline of job j,  

: Estimated number of cycles that job j consumes 
on a specific platform, , see eg.[4] for details. 

: Number of decoded frames when job j finishes,  

 
Figure 2: Directed acyclic dependence graphs for a) Dependencies between 
I-B1-B2-P1-B3-B4-P2 frames b) Hierarchical B Pictures, I-B1-B2-B3-P  

     In predictive coding, frames are encoded with 
interdependencies that can be represented by a directed acyclic 
dependence graph (DAG). Examples are shown in Figure 2 for 
two different GOP structures: the conventional I-B-B-P-B-B-P 
and the hierarchical B pictures. Decoding frame I is a job and 
decoding frames P1 and B1 jointly represent another job. 
Prediction structures using hierarchical B pictures as in the  
H.264/AVC standard lead to the following sizes ( ), 
complexities ( ), and deadlines ( ): the first job represents the 
decoding of the I-frame ( ) the second job 
consists of decoding frames P, B1 and B2 
( ) and the last job is the decoding of frame 
B3 ( ). It is important to notice that, both 
the second and the third job can be viewed from a high level 
perspective as decoding a B frame. However, the job 
parameters are substantially different, thereby highlighting the 
need for encoder-specific complexity estimation.    

3. BUFFER CONSTRAINED DVS  

Let us assume there is a discrete set of operating levels with 
corresponding frequency and power levels which can be used 
in our frequency/voltage adaptation. Each level has a different 
power consumption and different frequency 

. Assume there 
are a total of  jobs with deadlines 

,sizes  
and complexity estimates .  The DVS 
problem attempts to find the set of operating levels (power and 
frequency tuple) for each job, as follows: 

 DVS Problem:  

find   (energy consumption)               

s.t. (delay constraints)          

 
   
 
 

Figure 3: Proposed buffer controlled DVS 

We propose to use a post-decoding buffer between the display 
device and the decoding platform as shown in Figure 3. The 
operating level of the job j (p-f tuple) is determined considering 
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the parameters of M jobs and buffer occupancy B(j) . For each 
job, the complexity estimates are updated and based on the 
buffer occupancy, a new operating level is assigned. We define 
the buffer occupancy for job  as  recursively 

 and                                                    

where fr denotes the frame rate, ,the initial state of the 
buffer, depends on the initial playback delay(which may be 
zero if no delay is tolerable),  and is the time that job j 
takes which can be written as .Then, the DVS 
problem becomes the problem of minimizing total energy under 
buffer constraints.  

Buffer Constrained DVS Problem: 

find     (energy consumption)                

s.t.  (buffer constraints)                                       

We need to guarantee the buffer never underflows, such that no 
frame freeze occurs. Also, the buffer state can not grow 
indefinitely because it is a finite physical buffer. If we assume 
the maximum buffer size is , we need to guarantee that 
the buffer occupancy at any state is lower than .          

The optimal solution can be found by dynamic programming 
methods, which explicitly consider every possible frequency-
power pair for each job and check the buffer state for overflow 
or underflow. A trellis is created with given complexity 
estimates of the job and possible power-frequency assignments. 
At every stage, the paths reaching the same buffer occupancy at 
a higher energy cost are pruned.  

Although there is a finite number of operating levels, 
intermediate operating levels are achievable by changing the 
frequency/power within the job similar to the approach in  [2] 
[3]. Figure 4 shows the energy-delay curve for jobs j and j+1 
Intermediate levels are achieved by frequency changes within 
the job. Greater values of the slope means greater energy spent 
with smaller delay yielding a higher frequency-power choice. 

 
Figure 4: Operational Energy-Delay curve of jobs j and j+1 with D,E pairs 

corresponds to different frequency-power levels of the processor.  

Proposition I: If we neglect the transition cost from one 
frequency to another, the frequency change within the job 
corresponds to piece-wise bilinear interpolation power-
frequency points as shown in Figure 4.  Proof: See [7]. 

Proposition II: The slope between two E-D points only 
depends on the power/frequency values but not on 
complexities. Proof: See [7]. 

Proposition III: From a set of given power-frequency 
points, only the ones that generate a convex set of E-D points 
should be used for proactive DVS. Proof: See [7]. 

Hence, before any optimization, the power-frequency values 
which do not provide complex E-D points should be pruned, 
i.e., a convex hull of E-D points, from a possible set of E-D 
points should be generated. Since the slopes are identical for all 
jobs (Proposition II), this pruning is done only once for all jobs.   

Proposition IV: The optimal operating level assignment 
will result in equal slopes for every job. Proof: See [7]. 

Buffer constrained DVS problem is analogous to buffer 
constrained R-D optimal bit allocation problem [5]. Hence, 
similar to rate (buffer)-control problems in video transmission, 
we aim to keep the buffer state in equilibrium ( ) for a 
group of W jobs. Then, using Propositions II and IV, the 
optimal frequency considering a look-ahead window of W jobs: 

                       

   Algorithm 1 performs the delay-energy optimization for every 
job considering a look ahead window of W jobs.  

Table I: Algorithm 1   
1. Choose the set of frequency-power tuples 

which creates convex E-D points 

2. For each job   ( ),find the 
optimum frequency 

3. Proceed to job ( Step 2) 

A fast extension of this algorithm, Algorithm 2, is to perform 
this optimization and assign the same frequency for  jobs 
and re-perform this optimization only when the buffer level 
gets lower or higher than the specified thresholds.  

Table II: Algorithm 2   

1. Choose the set of frequency-power tuples 
which creates convex E-D points  

2.  For each look-ahead window of size   
3.  For job  within the window find the 

optimum frequency  

4. Execute the job with the assigned    

frequency and check buffer state     

5. If   or  change the   
frequency (Step 3) else continue with 
same frequency (Step 4)   

    A least complex approximation, Algorithm 3, is changing the 
frequency only when there is a risk of overflow or underflow.  

Table III: Algorithm 3   

1. Choose the set of frequency-power tuples  
which creates convex E-D points. 

2. For job  find the optimum frequency  

3. Execute the job with the assigned  
frequency and check the buffer state  
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4. COMPARATIVE RESULTS 

In this section we compare the proposed DVS method to 
conventional DVS methods. We used four different test 
sequences, foreman, mobile, coastguard and silence, 256 
frames at CIF resolution and frame rate 30fps, encoded at two 
different compression specifications (low complexity and high 
complexity), and decoded at 2 different rates, 512kbps and 
1024kbps. To obtain statistically meaningful results, we 
concatenated the resulting 16 videos in 12 different orders, 
resulting in a set of 12 long videos with 3072 frames each. We 
present the average results of 12 videos with different decoding 
traces. Power and frequency values are taken from [6] . 
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Figure 5 : Frequency assignment (a) and buffer fullness (b) for Algorithm 1  

In the following, we compare the fast algorithms, Algorithm 
1, 2, and 3 in terms of the buffer utilization, the number of 
frequency transitions and energy savings. The highest number 
of frequency changes occurs in Algorithm 1 compared to other 
algorithms whereas the least buffer level variation is observed, 
as shown in Figure 5. Algorithm 3 is the most conservative in 
terms of the number of frequency changes and as expected 
provides the least energy savings among the proposed three 
algorithms. The performance of Algorithm 2 is between that of 
Algorithm 1 and 3 in the sense of energy savings, buffer 
utilization, and the number of frequency changes. 
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Figure 6: Frequency assignment (a) and buffer fullness (b) for Algorithm 3  

As the buffer size and the look-ahead window size 
increases, energy savings of the proposed buffer controlled 
DVS algorithms increase as expected intuitively. The gap 
between the energy savings of Algorithm 1 and Algorithm 3 
decrease as the buffer size gets large. This result shows the 
trade off between the buffer size, energy savings and number of 
frequency changes. If the buffer size is large, energy savings 
close to the savings of Algorithm 1 can be achieved with less 
frequency transitions using Algorithm 3. Conversely, when the 
buffer size is small, the difference in energy savings of 
Algorithm 3 and Algorithm 1 can be significant. We also 
simulated the conventional DVS method in two ways. The first 

method, utilizes a statistical worst case complexity estimate 
denoted here as Conventional [3]. Another method is the 
optimum conventional DVS for benchmark purposes which is 
named as Conventional Lower Bound. We assumed the 
complexities of each job are known apriori and find the 
optimum theoretical DVS gain achievable by conventional 
DVS methods. Optimal Proactive is the optimal dynamic 
programming based algorithm assuming an exact knowledge of 
complexities before the actual decoding is performed. Optimal 
Proactive DVS shows the limit of energy savings given the 
buffer size.     

Table IV: Comparison of different DVS algorithms in terms of scaled 
energy spent and number of frequency changes per job. Benchmark (%100 
energy spent case) is no-DVS. 
                                                

 Scaled 
Energy 

# freq. 
changes 

Scaled 
Energy 

#of freq. 
changes 

Conv. Bound 45.21 1519.8 45.21 1519.8 

Conventional 60.43 1688.5 60.43 1688.5 
Optimal Proactive 36.93 1753.7 36.63 1747.3 
Algorithm 1 40.36 655.91 40.23 545.67 
Algorithm 2 40.60 161.0 40.58 82.75 
Algorithm 3 42.35 121.17 41.66 57.92 

As the results show, all of the proposed methods 
significantly out-perform the conventional algorithms in terms 
of energy savings and the number of frequency changes. Note 
that, the proposed method provides energy savings exceeding 
the upper bound of the conventional methods which is based 
on the exact knowledge of the complexity. This result clearly 
shows the superiority of the proposed proactive DVS method.  

5. CONCLUSION  

     In this paper we proposed a novel DVS method for video 
decoding which achieves energy savings exceeding the upper 
bound of the conventional DVS methods. We explored the 
fundamental energy vs. delay trade-off for video decoding 
systems and proposed new trade-offs such as buffer size vs. 
energy savings and the number of frequency changes that the 
platform can handle.  

6. REFERENCES 
[1] Intel Inc, “Intel XScale Technology,” Available  online 

http://www.intel.com/ design/intelxscale 
[2] T. Ishihara and H. Yasuura, “Voltage scheduling problem for 

dynamically variable voltage processors,” in Proceedings of Intern. 
Sym. on Low-Power Electronics and Design. Monterey, CA 1998. 

[3] W. Yuan et.al., “GRACE: Cross-layer adaptation for multimedia 
quality and battery energy,” IEEE Trans. on Mobile Comp.,to 
appear 

[4] M. van der Schaar and Y. Andreopoulos, “Rate-distortion-
complexity modeling for network and receiver aware adaptation,” 
IEEE Trans. on Multimedia, vol. 7, no. 3, pp. 471-479, June 2005. 

[5] A. Ortega, K. Ramchandran, and M. Vetterli, “Optimal trellis-
based buffered compression and fast approximations,” IEEE Trans. 
on Image Processing, Vol. 3, No. 1, Jan. 1994. 

[6] A. Sinha and A. P. Chandrakasan, “Jouletrack: A web based tool 
for software energy profiling,” in Proc. IEEE/ACM DAC, 2001. 

[7] E. Akyol, M. van der Schaar, “Complexity model based proactive 
dynamic voltage scaling for video decoding systems ”, IEEE Trans. 
on Multimedia, to appear 2007 

VI - 480


