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ABSTRACT

Video streaming imposes high rate requirement and strin-
gent constraints on resource limited mesh networks. In this
work, we develop a distributed asynchronous particle swarm
optimization (DAPSO) algorithm for resource allocation
and performance optimization scheme for video communica-
tion over large-scale mesh networks. Unlike many network
resource allocation performance optimization algorithms in
the literatures which are able to handle convex network util-
ity functions, the proposed scheme is able to handle generic
nonlinear network utility functions. We will use a specific
rate allocation and quality optimization problem for an ex-
ample to demonstrate the efficiency of the proposed scheme
and compare its performance with other algorithms, such
as distributed gradient search.

Keywords - Mesh networks, video streaming, distributed
rate allocation, particle swarm optimization.

1. INTRODUCTION

In large-scale video mesh networks, a large number of
sender devices transmit compressed video data, either stor-
age or live video data, to a large number of receivers through
multi-hop transmission. This type of video mesh network-
ing technology is found in many important applications,
such as web video communication, community video net-
working services, emergence response, battlefield communi-
cation, etc.

Recently, several distributed resource allocation and per-
formance optimization have been proposed for networks
[1, 2, 3, 4, 5, 6]. These algorithms are designed for network
transmission of generic data often and assume network util-
ity functions of relatively simple forms, such as additive and
convex (or concave) functions. However, within the context
of video communication over networks, the relationship be-
tween the video quality of service metric (or system per-
formance metric) and resource utilization parameters are
often nonlinear and complex. Therefore, there is a need to
develop a distributed asynchronous optimization algorithm
which is able to handle generic nonlinear network utility
functions.

In this work, we develop a distributed asynchronous par-
ticle swarm optimization (DAPSO) algorithm for rate allo-
cation and performance optimization scheme for video com-
munication over large-scale mesh networks. Unlike many

network resource allocation performance optimization algo-
rithms in the literatures which are able to handle convex
network utility functions, the proposed scheme is able to
handle generic nonlinear network utility functions.

The rest of this paper is organized as follows. Section
2 presents the optimization problem. Section 3 describes
DAPSO algorithm. Section 4 presents the experimental re-
sults of DAPSO on wireless video sensor networks. Section
5 gives the conclusions of this paper.

2. FORMULATION OF RATE ALLOCATION

PROBLEMS

We model the mesh network as a graph with V network
nodes V = {1, 2, · · ·V } and L logical links L = {1, 2, · · ·L}.
The mesh network is shared by a set of video transmission
streams, denoted by S = {1, 2, · · · , S}. In performance
optimization of video mesh networks under resource con-
straints, all network nodes need to collaborate in their re-
source utilization behaviors so as to maximize the over-
all system performance under resource constraints. Let
X = {x1, x2, · · · , xN} be the set of resource parameters,
such as encoding bit rate of a video stream.

Suppose we have N video streams that are sharing com-
munication links and crossing over the network. Let xn ∈
X = {x1, x2, · · · , xN} be the bit rate of video stream n. Let

XL[l] = {xn ∈ X|video stream n uses link l}. (1)

And let Cl be the link capacity. According the link capacity
constraint, we have

∑

xn∈XL[l]

xn ≤ Cl, 1 ≤ l ≤ L. (2)

A commonly used metric for measuring the quality of
a single video stream is the coding distortion. As sug-
gested by the literature on rate-distortion (R-D) modeling
for video coding, we use the following R-D model

D(xn) = σ2
n × 2−λxn , (3)

to describe the relationship between video coding distor-
tion D and source rate xn for video stream n. Here, σ2

n

represents the picture variance, and λ is an encoder-related
parameter. It should be noted that in this work we just
use the R-D model in (3) as an example to demonstrate the
proposed DAPSO algorithm. Certainly, this model can be
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replaced by any other more accurate R-D model developed
in the literature. As we can see, the optimization procedure
of the proposed DAPSO algorithm does not depend on the
specific expression of the R-D model.

One commonly used measure to describe the overall
video quality of multiple video streams is the aggregated
video distortion, i.e.,

U(x1, x2, · · · , xN ) =

N∑

n=1

D(xn) =

N∑

n=1

σ2
n × 2−λxn . (4)

As noted by a number of researchers, when characteriz-
ing the overall quality over multiple video streams, besides
minimizing the aggregated video distortion, we also need
to minimize the quality variation between different video
streams. From a user’s perspective, minimizing the qual-
ity variation is also a very important part of maintaining
the fairness among users and different video services. Now,
the rate allocation and performance optimization can be
formulated as

min U(x1, · · · , xN ) =
N∑

n=1

[w1D(xn) + w2|D(xn) − D̄|],

s.t.
∑

xn∈XL[l]

xn ≤ Cl, 1 ≤ l ≤ L. (5)

Here D̄ = 1
N

N∑
n=1

D(xn). From this rate allocation exam-

ple we can see that the network utility function in video
communication over networks U(x1, x2, · · · , xN ) is often a
nonlinear non-convex (or non-concave) function. It should
be noted for many other resource parameters, such as trans-
mission power, channel coding rate, etc, their network util-
ity functions could also be non-convex.

For large-scale networks, the performance optimization
problems in (5) is often a high-dimensional nonlinear non-
convex constrained optimization problem. Existing meth-
ods developed for convex optimization and existing algo-
rithms for distributed rate allocation, flow control, and re-
source allocation, such as distributed gradient search, can-
not be applied. In this work, based on a swarm intelligence
principle, we develop a distributed asynchronous particle
swarm optimization (DAPSO) algorithm to solve the con-
strained nonlinear rate allocation problem in (5).

3. DISTRIBUTED AND ASYNCHRONOUS

PARTICLE SWARM OPTIMIZATION

3.1. Introduction to Particle Swarm Optimization

Particle swarm optimization (PSO), developed by Kennedy
and Eberhart in 1995 [7], is a promising population based
new optimization technique which models the set of poten-
tial problem solutions as a swarm of particles moving about
in a virtual search space. Some attractive features of PSO
include the ease of implementation, and no gradient infor-
mation is required. PSO can be used to solve a wide range
of different optimization problems, including most of the
problems that can be solved using Generic Algorithms.

Research results demonstrate that PSO outperforms other
nonlinear optimization techniques, such as genetic algo-
rithm and simulated annealing [7]. The high-level idea of

PSO can be summarized as follows. To find the minimum of
an objective function f(x) (x is a vector) within a solution
space P , the PSO algorithm starts with a set of candidate
solutions (called particles), {xm|1 ≤ m ≤ M} distributed
in P . A typical value of M is between 20 and 50 [7]. During
the optimization process, each particle xm moves within the
solution space in search for the minimum of f(x) , and the
corresponding movement path is denoted by xm(t), where
t represents time. At each time step, the movement of par-
ticle xm is given by

xm(t + 1) = xm(t) + v, (6)

where

v = w · v + c1Θ1[xm
p − xm(t)] + c2Θ2[xg − xm(t)]. (7)

Here, w, c1 and c2 are weighting factors, Θ1 and Θ2 are
two random numbers. xm

p is the best solution that the
particle itself has found so far, and xg is the best solution
that all particles have found so far. Each particle, when
determining its next move, always balances the behaviors
of its own and the group [7].

3.2. Overview of DAPSO

Our major idea in distributed and asynchronous PSO
(DAPSO) can be summarized as follows. We propose to
decompose the global optimization problem into a set of
local optimization modules, each of which is associated with
a communication link. For each link, which corresponds to
a local optimization module, we introduce a set of local
resource parameters, Xl = {xnl}, where xnl represents the
bit rate of video stream n at local optimization module l.
We define the l-th local optimization module to be

min Ul(Xl) =
∑

n∈XL[l]

[w1D(xnl) + w2|D(xnl) − D̄∗|], (8)

s.t.
∑

n∈XL[l]

xnl ≤ Cl, 1 ≤ l ≤ L.

Here w1 and w2 are weight parameters for overall video dis-
tortion and distortion difference, D̄∗ = 1

N∗

∑
n∈S(l)

D(xnl),

and N∗ is the total number of the video streams path link
l. Note that, for a video stream, its bit rate on each link
along the transmission path should be the same. In other
words,

xnl = xnk, ∀ l, k ∈ LS [n], (9)

where LS [n] is the set of links used by video stream n. We
can see that the original global optimization problem has
been decomposed into L local optimization modules in (9)
plus a set of resource constraints in (9). In the proposed
DAPSO algorithm, each local constrained optimization in
(9) is solved using the PSO algorithm discussed in Section
3.1. Each local PSO module has a group of local particles
moving around the solution space defined by the local con-
straints for the local optimum. Neighboring PSO modules
share status information about their “group-best”, denoted
by Xg

l , using this external information to guide the moves
of its internal particles.
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Figure 1: Distributed and Asynchronous PSO Algorithm.

The high level idea for DAPSO algorithm is illustrated
in Fig. 1. One of major challenges in network resource al-
location is to deal with bottleneck links where a large num-
ber of video streams share a communication link with a very
limited resource capacity, as illustrated in Fig. 2. To address
this bottleneck issue, we propose a method called particle
migration, to incorporate the bottleneck information shar-
ing into in-network fusion. Our basic idea is to introduce
a resource budget window for each resource parameter in
each local PSO modules. For example, the resource param-
eter xnl is the bit rate of video stream n in the l-th PSO
module. We impose the following resource budget window
constraint on xnl

C−nl ≤ xnl ≤ C+
nl (10)

and incorporate this constraint into the local PSO module
formulated in (9). During in-network fusion, in addition
to using the group-best particles to modify their group-best
particles, each PSO module also fuse and modify their re-
source budget window information. One simple fusion rule
is as follows: At one check time during the operation pro-
cedure for one local PSO module, if this module gets a new
group-best particle, it will generate a new resource budget
window, and at the same time, it will also check if the cur-
rent local group-best particle is inside the new group-best
particle which it just get. If the local group-best particle
is inside the new group-best particle, this means this source
rate maybe can still reach more resource, then we need to
increase its resource budget window size step by step, oth-
erwise, the resource budget window size will be decreased
step by step.

Figure 2: An example of critical link in a multihop mesh
network.

The DAPSO algorithm can be stated as follows:
Step 1: Initializes local PSO module on every link l.

Step 2: After several iteration, doing in-network fusion
and particle migration, sharing group-best particles from all
local PSO modules during the in-network fusion.
Step 3: Generates “resource budget window” as new source
rate capacity constraints for every source in each local PSO
module to handle these kinds of inter-dependent resource
constraints.
Step 4: When one local link gets the new capacity con-
straints, such as a new resource budget window and a new
group-best particle, mapping all particles into this “resource
budget window”, re-initializes PSO on this local link.
Step 5: In each local PSO module, during local PSO op-
timization process, adapts resource budget window size for
every source pathes this link.
Step 6: Go through Step 2 to Step 5 until all the local
PSO modules are converged and balanced

4. EXPERIMENTAL RESULTS

We use wireless video sensor network (WVSN) as an
example to demonstrate the DAPSO algorithm. We test
the proposed distributed and asynchronous optimization
scheme using DAPSO with different WVSN topologies. In
the following experiment, a sensor network has 6 sources
and 15 links was selected.

The other parameters used in DAPSO are set as follows:
link capacity cl = 100, particle size = 20, PSO update iter-
ation = 10, initial window size = 0.3× cl, decrease window
step size = 0.7, and increase window step size = 2. The
parameters used in WVSN are set as follows: λ = 0.023,
g(Pi) = 10, and σ2

1 = 100, σ2
2 = σ2

6 = 200, σ2
3 = σ2

5 = 400,
σ2

4 = 800. And the weight parameters are set as follows:
w1 = 1, w2 = 0.1.
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Figure 3: A WVSN topology with 6 sources and 15 links.

Fig. 3 depicts an example network topology which has
6 sources and 15 links. For each source, it pathes several
links and has several different utility function value. We use
the average, minimum and maximum utility function value
of each source for DAPSO algorithm. Fig. 4 shows that the
overall DAPSO utility function solution quickly reaches to
the convergence optimum solution after several PSO update
iterations.

Fig. 5, 6, and 7 also show the movement path of each
source during the search process in several critical links
same as the previous experiment. Here in each particle
cluster, we only trace the best particle’s moving path. And
the critical links’ capacity usage percentage for link A, B
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and C are near 100%, 84% and 65% when the whole net-
work is balanced. From these experimental results, we can
see that the proposed scheme works very efficiently. Our
experimental results with other settings of WSN with dif-
ferent source number and link number yield similar results.
They are omitted here due to page limitation.
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Figure 4: The performance function value decrease as the
particles update their positions.
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Figure 5: The traces of the particles moving in critical link
A.
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Figure 6: The traces of the particles moving in critical link
B.

The weight parameters here will control the optimiza-
tion results, when we change the parameters to: w1 = 1
and w2 = 1. The critical links’ capacity usage percentage
for link A, B and C are near 68%, 52% and 36% which drop
quickly when the whole network is balanced.

5. CONCLUSION

In this paper, based on the properties of WVSN and
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Figure 7: The traces of the particles moving in critical link
C.

the swarm intelligence principle, we have developed an evo-
lutionary optimization scheme to solve the communication
network distributed and asynchronous optimization prob-
lem. The basic operation involves utility function maxi-
mization optimization in each link and transmits its best
local results to the network. The outstanding contribution
of this paper is there are no convex or concave require-
ment for the utility function, which are required in other
traditional distributed optimization algorithms. Simulation
results show that our evolutionary optimization scheme is
very efficient for different network topology. In our future
work, we plan to extend our work to solve the optimization
problem when the network circumstance is not stable.
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