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ABSTRACT

A new multiple description image coding paradigm is presented in
this paper by combining the lapped transform, block level source
splitting, inter-description prediction, and coding of the prediction
residual. Jointly optimal designs of all system components are dis-
cussed. Compared with the best multiple description image coding
algorithm in the literature, the new method can achieve significant
improvement when one description is lost, given the same bit rate
and the same central distortion.

Index Terms— Image coding, Image communication, Informa-
tion theory, Estimation

1. INTRODUCTION

As an attractive diversity technique for combating transmission er-
rors, the multiple description coding (MDC) [1] generates more than
one compressed bit stream (description), which can be transmitted
via different paths. Judiciously designed redundancies are intro-
duced in all bit streams such that the reconstruction quality degrades
gracefully when some of them are lost.

The rate-distortion bounds for MDC have been established in,
for example, [2]. The two main practical mechanisms of approach-
ing these bounds are based on quantization and transform, respec-
tively. The first approach is pioneered by the multiple description
scalar quantizer (MDSQ) [3], which is asymptotically near-optimal.
However, it requires complicated index assignment. Recently, an el-
egant two-stage modified MDSQ (MMDSQ) with the same asymp-
totic performance as the MDSQ for stationary signals is developed
[4], in which the first layers of the two descriptions are generated by
two uniform scalar quantizers with staggered bins, and another uni-
form quantizer is used to further partition the joint bins of the two
first layer quantizers. The quantization result of the second-stage
quantizer is evenly split into two parts to form the second layers
of the two descriptions. The application of this method in wavelet-
based image coding yields, to the best of our knowledge, the best
multiple description image coding performance in the literature.

Various transform-based MDC algorithms have also been stud-
ied. In [5, 6], the lapped orthogonal transform is used to add redun-
dancy to each description. The transformed image is split at block
level to formmultiple descriptions. When some descriptions are lost,
the lost blocks are filled by averaging neighboring blocks in [5].
In [6], the missing areas are concealed by imposing a smoothness
constraint. In [7], the time domain lapped transform [8] is used,
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which simplifies the problem formulation. The Wiener filter is fur-
ther applied in [9] to estimate the lost blocks, leading to significant
improvement over [5–7]. However, its performance is still below
that of [4].

Another transform based MDC algorithm is the pairwise corre-
lating transform [10], which introduces redundancy between two in-
dependent coefficients before splitting them into two descriptions. If
one coefficient is lost, it is estimated from its counterpart in the other
description. Compared with MDSQ, this method can yield a lower
redundancy range, but it has worse performance at high rates [10]. It
is shown in [11] that this is caused by the inherent prediction resid-
ual of the linear prediction. To resolve this problem, it is proposed
in [11] to encode the prediction residual in each description. How-
ever, no image coding result is reported in [11].

In this paper, we present a new MDC framework by combin-
ing the time domain lapped transform, block level splitting, inter-
description prediction, and prediction compensation. The coding of
the prediction residual resolves the problem in [5–7, 9] and enables
the system to easily achieve different tradeoffs between the central
and side distortions. Since the prediction and the coding of the resid-
ual operate at the block level, the design and implementation of the
method are also simpler than the coefficient-level method in [10,11].
Image coding results show that at the same bit rate and central dis-
tortion, our method can outperform the method in [4] by up to 6 dB
if only one description is received. The performance of our method
can be further improved, as will be discussed in the end of this paper.

2. PROBLEM FORMULATION AND OPTIMAL DESIGN

In this paper, we only consider MDCwith two balanced descriptions.
Fig. 1 illustrates the generation of one description by the proposed
method. The other description is obtained similarly. The M × M

prefilter P at block boundaries and the M -point DCT C generate
the time domain lapped transform [8] (M is the block size), whose
compression performance is comparable to JPEG 2000 [12]. In what
follows, we use x(i), s(i), y(i) and q(i) to denote the i-th block of
prefilter input, DCT input, DCT output and quantization noise, re-
spectively. The prefiltered blocks are split into even-indexed blocks
and odd-indexed blocks, which we call the intra-description blocks
of each description or intra blocks for short.

Different from [5–7, 9], each description also encodes the pre-
diction residuals of blocks in the other description. The predic-
tion for each block is obtained by Wiener filtering the two recon-
structed neighboring blocks from the other description. In analogy
to the temporal prediction-based inter frames in video coding, we
call the spatial prediction residuals the inter-description blocks or
inter blocks.

The DCT, quantization and entropy coding are then applied to all
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Fig. 1. Block diagram for generating one description.

blocks in each description, but with one quantization step for intra
blocks and another step for inter blocks.

In the decoder side, if both descriptions are received, the de-
coded intra blocks from the two descriptions are combined to obtain
the reconstructed signal. The inter block data are discarded. If only
one description is received, the missing intra blocks are first pre-
dicted from the received intra blocks. The final reconstruction of the
missing blocks is the sum of the prediction and the received inter
blocks. In other words, the redundant information in our method is
used to reduce the side distortion. This is different from theMMDSQ
in [4], where the second layer bits reduce the central distortion.

Let d(i), t(i) and e(i) denote the i-th block of DCT input,
DCT output and quantization noise of the prediction residual part,
as shown in Fig. 1. Define

s2 =
[

sT (n − 1) sT (n + 1)
]T

,

ŝ2 =
[

ŝT (n − 1) ŝT (n + 1)
]T

,
(1)

the Wiener filter for s(n) from the two neighboring blocks can be
shown to be [9]

W = Rs(n)s2R
−1
s2s2

, (2)

where R denotes the correlation matrix between the two subscript
signals. To get (2), we assume the input is an AR(1) signal. As
in [9], we ignore the quantization error in s2.

We assume that each description is either completely lost with a
probability of p or perfectly received with probability 1−p. Our ob-
jective is to find the optimal prefilterP and the optimal bit allocation
between intra and inter blocks that minimize the expected distortion.
This makes it easier to study the effect of the description loss prob-
ability p than the objective functions in [5–7, 9]. We use D0, D1,
R, R0 and R1 to denote the central distortion, the side distortion,
the total bit rate of the system, the intra block bit rate and the inter
block bit rate, respectively, where R0 + R1 = R, and R0 is usually
greater than R1. As in many MDC systems, the expected distortion
D is thus defined as

D = (1 − p)2D0 + 2p(1 − p)D1. (3)

Since each description contains intra-coded blocks and inter-
coded blocks, we have

D0 = Dintra,

D1 =
1

2
(Dintra + Dinter),

D = (1 − p)2Dintra + p(1 − p)(Dintra + Dinter)

= (1 − p)Dintra + p(1 − p)Dinter,

(4)

where Dintra and Dinter are the average quantization error of the
intra-coded blocks and inter-coded blocks, respectively. Under the
assumptions of Gaussian sources and optimal bit allocation for the
given R0 and R1, we have

Dintra = 2−2R0

M−1∏
i=0

(σ2
yi
||fi||

2)
1

M � 2−2R0σ
2
0 , (5)

where σ2
yi
is the variance of the i-th subband of the intra part, ||fi||

2

is the norm of the i-th synthesis basis function.
By the property of differential coding, the reconstruction error

of s(n) equals that of d(n). From this we can get

Dinter = 2−2R1

M−1∏
i=0

(σ2
ti
||fi||

2)
1

M � 2−2R1σ
2
1 , (6)

where σ2
ti
is the variance of the i-th subband of the prediction resid-

ual, and can be found from the i-th diagonal element of autocorrela-
tion matrixRt(n)t(n) , which is given by

Rt(n)t(n) = C{Rs(n)s(n) − WRs2s(n)}C
T
. (7)

The optimal values of R0 and R1 can be found by defining the
Lagrangian cost function

L = (1−p)2−2R0σ
2
0 +p(1−p)2−2R1σ

2
1 +λ(R0 +R1−R), (8)

and the solution is

R0 = min

(
R,

R

2
+

1

4
log2

σ2
0

pσ2
1

)

R1 = max

(
0,

R

2
−

1

4
log2

σ2
0

pσ2
1

)
, (9)

where the min( ) and max( ) operators are to ensure thatR0 ≤ R and
R1 ≥ 0. Eq. (9) shows that more bits are needed for the prediction
residual when the description loss probability p is higher or when
the correlation in the signal is weaker. Notice that R1 = 0 when
R < 1

2
log2

(
σ2

0

pσ2

1

)
. This is the threshold below which the predic-

tion compensation will not be useful at all. In this case our method
reduces to our previous approach in [9]. It should be noted that the
threshold is for stationary Gaussian AR(1) signals. For nonstation-
ary signals like images, we will show later that sending prediction
residual is helpful at almost all bit rates.

The optimal bit allocation above is for a given prefilter P. We
can then use a Matlab optimization program to find the optimal pre-
filterP that minimizes the expected distortion in (3).

It can be shown that as in the method in [11], the asymptotic per-
formance of the proposed method is roughly 3 dB below the MDSQ
and MMDSQ for stationary signals. However, the proposed method
is especially suitable for nonstationary signals, and it can signifi-
cantly outperform the MMDSQ, as shown in the next section.

3. DESIGN EXAMPLES AND IMAGE CODING RESULTS

We denote the proposed method as multiple description lapped trans-
form with prediction compensation (MDLT-PC) and the prediction-
only method in [9] as MDLT-P. Fig. 2 compares the relationship
between the optimized coding gain and the loss probability p in the
two methods. For fair comparison, the curve for the old method is
obtained with the objective function (3) and R1 = 0. It can be seen
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Fig. 2. The relationship between coding gain and loss probability.
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Fig. 3. The theoretical and actual optimal R1 for image Lena.

that the coding gain of MDLT-P in [9] (as well as [5–7]) drops con-
tinuously as the increase of p. In contrast to this, the coding gain of
the MDLT-PC only degrades slightly. When the block size is 8, the
coding gain of the best lapped transform in [8] is 9.62 dB, whereas
the coding gain of our proposed MDC system stabilizes at 9.42 dB
when p > 0.005. Therefore when the prediction residual is encoded,
the multiple description lapped transform is not sensitive to the loss
probability, making it possible to fix the transform and still achieve
near-optimal performance over a wide range of operating scenarios.

We next demonstrate the performance of the proposed method in
the coding of natural images. The block size is selected to be 8, and
the two descriptions are generated by partitioning the transformed
blocks in a checkerboard pattern. To predict a lost block, the average
of the horizontal Wiener prediction and vertical Wiener prediction is
used. The embedded entropy coding in [12] is applied to encode
the intra part and the inter part of each description independently.
This is indeed another advantage of the block level splitting over the
coefficient level splitting in [10,11], i.e., existing entropy coding can
be applied directly.

We first show that sending prediction residual is helpful even for
smooth images and low bit rates. This can be seen from the result
for the image Lena in Fig. 3, where the theoretical curve is based on
the AR(1)-based bit allocation formulas in (9) with p = 0.1, and the
actual curve is obtained by varying the quantization steps of the intra
and inter parts until the minimal expected distortion is achieved. It
can be seen that (9) is only accurate at high rates, and better result
can be obtained by sending the prediction error even at very low
rates.

Fig 4 compare the proposed method and the MDLT-P in [9] with
the images Lena, Boat and Barb. The best design example P21 in [9]
is used for the MDLT-P method. The transform for the MDLT-PC

method is optimized with the assumption of p = 0.1. Although
the central PSNR of the MDLT-P method is slightly higher than the
proposed method, its side PSNR deteriorates drastically. In fact, the
side PSNR of the MDLT-P is almost constant even at high rates, due
to the MSE of the Wiener filter. In the new method, the side PSNR
improves steadily as the increase of the bit rate. As a result, graceful
degradation from the central PSNR to the side PSNR is achieved.

Although the AR(1)-based bit allocation is not accurate at low
rates, the optimized transform by the AR(1) model yields better
MDC performance than the transform in [8] at all rates. It also out-
performs other methods. In Fig. 5, the proposed method is compared
with the wavelet-based MMDSQ in [4], which has the best MDC
performance in the literature. As in [3, 4] and many other MDC pa-
pers, the tradeoff between the central PSNR and the side PSNR is
used as the performance measure. In our method, this is achieved
by varying the quantization steps of the intra and inter parts. The
total bit rate R is fixed at 1 bit/pixel. It can be seen that for most
images, our method outperforms the MMDSQ by a large margin.
For example, when the central PSNR is 37.5 dB, the side PSNR im-
provement of our method over the MMDSQ is around 6 dB for the
image Barb. For smooth images like Lena, our method only loses to
MMDSQ slightly. Fig. 6 shows some examples from Fig. 5 when
one description is lost. The two methods are compared at the same
bit rate (1bpp) and same central PSNR. Our method achieves an im-
provement of 5.2 dB and 3.0 dB for Barb and Boat, respectively.
The visual quality of our method is also clearly superior.

4. CONCLUSION

This paper presents an improved MDC paradigm by integrating time
domain lapped transform, block level splitting, linear prediction and
compensation. Image coding results show that it outperforms the
quantization based MDC significantly. The proposed framework can
be further improved. For example, the side information can be re-
duced by refining the entropy coding for the inter blocks, and other
prediction methods can be applied to reduce the prediction residual.
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