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ABSTRACT

If precise calibration information is unavailable, as is often
the case for active binocular vision systems, the determina-
tion of epipolar lines becomes untenable. Yet, even without
instantaneous knowledge of the geometry, the search for cor-
responding points can be restricted to areas called epipolar
spaces. For each point in one image, we define the corre-
sponding epipolar space in the other image as the union of
all associated epipolar lines over all possible system geome-
tries. Epipolar spaces eliminate the need for calibration at the
cost of an increased search region. One approach to mitigate
this increase is the application of a space variant sampling or
foveation strategy. While the application of such strategies
to stereo vision tasks is not new, only rarely has a foveation
scheme been specifically tailored for a stereo vision task. In
this paper we derive a foundation of theorems that provide a
means for obtaining optimal sampling schemes for a given set
of epipolar spaces. An optimal sampling scheme is defined as
a strategy that minimizes the average area per epipolar space.

Index Terms— Stereo vision, Image sampling, Active vi-
sion, Image registration

1. INTRODUCTION

Active binocular vision systems (ABVS) are especially well
suited for the recovery of depth information [1]. This recov-
ery process, accomplished through registration, can be greatly
simplified if the geometric configuration is known, allowing
the search for corresponding points to be restricted to epipolar
lines. Unfortunately, ascertaining the actively changing stereo
geometry requires accurate calibration, a complex procedure.
Though it is possible to register images without geometric in-
formation, such unconstrained algorithms are usually more
time consuming and prone to error. In this paper we propose
a compromise. Even without knowledge of the exact stereo
geometry we can restrict the region of correspondence by im-
posing limits on the possible range of configurations. That is,
by restricting the range of vergence angles, baseline distances,

and focal lengths etc., we can confine our search for matching
points to what we refer to as epipolar spaces. For each point
in one image, we define the corresponding epipolar space in
the other image as the union of all associated epipolar lines
over all possible system geometries.
Epipolar spaces eliminate the need for calibration at the

cost of an increased search region. One approach to mitigate
this increase is the application of a space variant sampling or
foveation strategy. The application of such a strategy to stereo
vision tasks is not new. Space variant transformations such as
log-polar [2], reciprocal wedge transform [3], and fish-eye [4]
have been successfully applied to binocular vision problems
such as vergence [5] and depth recovery of a scene [6]. Yet,
only rarely has a foveation strategy been specifically tailored
for a stereo vision task. Both Basu [7] and Elnagar [8] de-
rived optimal sampling schemes with respect to the error dis-
cretization of depth measurements. Klarquist and Bovik [9]
designed a real-time foveated stereo technique that adapts to
the specific geometry, always producing horizontal epipolar
lines.
In this paper we first formalize the concept of epipolar

spaces. We then discuss the general mathematics of applying
nonuniform sampling strategies to epipolar spaces. Finally,
we present an optimal sampling scheme specifically designed
to minimize the average area per epipolar space.

2. EPIPOLAR SPACES

Given the specific stereo geometry shown in Fig. 1, the ex-
pression for corresponding epipolar lines is

vl = vr

f sin (θl) + ul cos (θl)

f sin (θr)− ur cos (θr)
. (1)

Consider the situation where the camera configuration ac-
tively changes and we no longer know the specific geometry.
Computing epipolar lines becomes untenable. However, even
though we may not know the precise values of parameters
such as focal length, baseline distance, and camera rotation
angles, we can establish acceptable ranges for these values.
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Fig. 1. Stereo geometry.

Consequently, we can still restrict the location of correspond-
ing points across images. For a given point in one image, the
matching point in the other is confined to a region defined by
the union of all corresponding epipolar lines produced over
all possible camera configurations. We call these continuous
regions epipolar spaces.
The goal of the remainder of this section is to quantify

these epipolar spaces for a stereo rig with a fixed baseline and
fixed focal length as shown in Fig. 1. In this configuration the
only variable parameters that effect the epipolar geometry are
the camera rotation angles θl and θr. Translation and rotation
of the entire stereo rig about O, while allowed, do not influ-
ence the epipolar geometry. We establish the range of rotation
angles by confining them to the interval

θl, θr ∈ [θM , π − θM ] , (2)

where θM is the minimum angle relative to the baseline.
Although theoretically a matching point can lie anywhere

on the corresponding epipolar lines, the search is usually re-
stricted to a maximum horizontal disparity. For our purposes,
we assume a maximum horizontal disparity defined by

|d| = |ul − ur| ≤ D. (3)

The restriction imposed by (3) determines the leftmost
and rightmost bounds of the epipolar spaces. The upper and
lower bounds are determined by maximizing and minimizing
(1) with respect to both θl and θr. For reasonable image sizes
and focal lengths these bounds can be approximated as fol-
lows:

vl,max ≈ vr

√
f2 + u2

r

f sin (θM )− ur cos (θM )
= vrc (ur) (4)

vl,min ≈ vr

f sin (θM )− ur cos (θM )√
f2 + u2

r

=
vr

c (ur)
, (5)

where

c (ur) =

√
f2 + u2

r

f sin (θM )− ur cos (θM )
. (6)

Remarkably, an epipolar space is well modeled by a rectangle.
This fact is illustrated in Fig. 2. The thick lines represent the
precise boundaries of the regions. The thin lines denote the
approximate upper and lower bounds determined from (4) and
(5). Epipolar spaces are nonuniform in area, increasing in size
with increasing values of u and v.
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Fig. 2. Various epipolar spaces.

3. OPTIMAL SAMPLING THEOREMS

Epipolar spaces eliminate the need for calibration at the ex-
pense of an increased search space. To mitigate this increase,
a sampling strategy can be applied. The optimal strategy
is defined as the one that minimizes the average number of
points per epipolar space. Though sampling is inherently a
discrete process, it can be modeled continuously. Working in
a continuous domain simplifies the analysis, allowing the use
of powerful mathematical tools that are either unavailable or
extremely cumbersome in a discrete framework.
Consider any two-dimensional, connected region R. For

each point u in R the matching point must lie within the cor-
responding epipolar space r (u). The goal of an optimal sam-
pling strategy is to place N points in the region R in such
a fashion as to minimize the average number of candidate
matches for each of the N points. A candidate match for
point uj is defined as any point uk that lies within the epipo-
lar space r (uj).
A discrete sampling strategy can be represented as a con-

tinuous sampling function [10]. Such a function is defined as
any invertible function γ (u)

.
= [γu (u) , γv (u)]

t that maps
R

2 → R
2 and has a Jacobian matrix with a determinant that

is positive everywhere. For a given sampling function γ (u)
the average area of the epipolar spaces r (u) over the region
R is defined as

E (γ; r,R) =
1

AR

∫∫
R

e [γ; r (u)] |γ′ (u)|du, (7)
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where
e [γ; r (u)] =

∫∫
r(u)

|γ′ (ũ)| dũ (8)

is the area of the epipolar space associated with the point
u after transformation, γ

′ (u) is the Jacobian matrix, and
AR =

∫∫
R

du. An optimal sampling scheme is a function
γ (u) that minimizes E (γ; r,R) subject to the constraint of
area preservation:

Λ (γ;R) =

∫∫
R

|γ′ (u)| du =

∫∫
R

du = AR. (9)

We begin by considering hypothetical uniform rectangu-
lar epipolar spaces r̃ (u) defined by ũ ∈ [u−cu, u+cu] and
ṽ ∈ [v−cv, v+cv], where cu ≥ 0 and cv ≥ 0. It is assumed
that AR � cucv , eliminating the need to clip the epipolar
spaces that extend outside ofR. Furthermore, since the epipo-
lar spaces are separable and not spatially variant, it is reason-
able to restrict the space of optimal sampling functions to the
space of separable functions, i.e. γ (u)

.
= [γu (u) , γv (v)]

t.
With these restrictions (8) can be well approximated (for uni-
form epipolar spaces) as follows:

e (γ; r̃) ≈ cucvγ′

u (u) γ′

v (v) . (10)

Assuming separability, the insertion of (10) into (7) produces

E (γ; r̃, R) ≈
4cucv

AR

∫∫
R

[γ′

u (u) γ′

v (v)]
2
dudv. (11)

The following theorems and proofs form the foundation
for constructing optimal two dimensional sampling strategies.

Theorem 3.1 Let R be a rectangular image plane with u ∈
Iu and v ∈ Iv, where Iu and Iv are the intervals defined
by [au, bu] and [av, bv], respectively. If γu (u) ∈ C2 [au, bu]
and γv (v)∈C2 [av, bv] then γu (u)=βuu and γv (v)=βvv,
where βuβv = 1, minimize the objective functional given in
(11), subject to the constraint posed in (9).

Proof This is omitted due to space restrictions.

Theorem 3.2 If γ (u) = Γ (u) is a sampling function that
minimizes E (γ; r,R) subject to Λ (γ;R)=AR and χ (u) is
some other sampling function satisfying Λ

(
χ

−1;R
)

= AR,
then γ (u) = Γχ (u) = Γ [χ (u)] minimizes the functional
E (γ; rχ, Rχ) subject to the constraint Λ (γ;Rχ) = ARχ

,
where Rχ =χ

−1 (R) and rχ (u)=χ
−1 (r [χ (u)]).

Proof This can be shown by performing the variable substi-
tution x = χ

−1 (u) in equations (7), (8), and (9). This is
omitted due to space restrictions.

Theorem 3.1 states that uniform rectangular sampling is
optimal for uniform rectangular epipolar spaces when the area
of R is large with respect to the individual epipolar areas, i.e.
as the amount of clipping becomes negligible. This holds for

uniform rectangular epipolar spaces of any aspect ratio. It
also holds for rectangular sampling of any aspect ratio; that
is, the sampling rate in each dimension need not agree. Com-
bining this result with Theorem 3.2 demonstrates that any
area preserving sampling function (i.e., it satisfies (9)) that
warps nonuniformly sized epipolar spaces into rectangles of
uniform size is the minimizing function associated with those
nonuniform spaces. In fact, the nonuniform spaces do not
have to be warped into rectangles. They need only be mapped
into regions of uniform area. The proof of this is omitted
for space. In summary, any area preserving sampling func-
tion γ (u) that warps epipolar spaces into regions of uniform
area is optimal with respect to their average epipolar area.

4. OPTIMAL SAMPLING STRATEGY

This section uses the results from previous sections to for-
mulate the optimal sampling schemes for the epipolar spaces
defined in (3), (4), and (5). The sampling function that warps
these epipolar spaces into regions of nearly equal area, and
consequently, minimizes (7) is:

γ (u, v) =

[
βuu,

βvln v

ln c (u)

]t

, (12)

where βu and βv are constants chosen such that their prod-
uct satisfies the constraint in (9). The transformations of the
epipolar spaces shown in Fig. 2 using (12) are illustrated in
Fig. 3. Though the warped boundaries are not identical in
shape, they are almost perfectly uniform in area.
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ṽ Image Boundary

Fig. 3. Epipolar spaces from Fig. 2 after optimal sampling.

As mentioned previously, the constants βu and βv in (12)
are only restricted in the sense that their product must satisfy
(9). This is a consequence of the fact that the average epipolar
area is a function of the determinant of the Jacobian of γ (u),
and not γ (u) itself. Fig. 4 illustrates the optimal sampling
strategies when βu is set to two different, arbitrarily chosen
values: βu =1 and βu =4.
Consider the uniform grid in Fig. 5(a). This grid repre-

sents the uniform sampling of the warped image space re-
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Fig. 4. Examples of optimal sampling scheme.

sulting from the application of the optimal transformation in
(12) to a square image plane. Fig. 5(b) illustrates the tessel-
lation resulting from projecting the uniform grid in Fig. 5(a)
back into the original square image plane. Each enclosed area
in the tessellation is called a super-pixel. Foveating a typi-
cal uniformly sampled image requires assigning all the uni-
form pixels within each super-pixel their average value. In
the warped space each uniform pixel is assigned the average
of its concomitant super-pixel.
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Fig. 5. Tessellations for optimal epipolar sampling.

5. CONCLUSION

In this paper we introduced the concept of an epipolar space.
For a point in one image, an epipolar space was defined as
the region in the other image formed from the union of all as-
sociated epipolar lines produced over all possible geometric
configurations. Epipolar spaces eliminate the need for cali-
bration, but at the expense of a greater search space. To re-
duce this increase we established a foundation of theorems
for deriving optimal foveation schemes that minimize the av-
erage area per epipolar space. These theorems indicated that
any transformation mapping nonuniform epipolar spaces into
regions of uniform area is optimal with respect to mean epipo-
lar area. As a demonstration of principle we obtained an opti-
mal sampling scheme and tessellation for the epipolar spaces
resulting from a specific range of stereo geometries.
On a final note, we reiterate that for a given set of epipo-

lar spaces there exists an infinite number of optimal sampling
strategies. To intelligently select from among these foveation

schemes the additional optimization of ancillary metrics, such
as 3D discretization error, can also be considered.
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