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ABSTRACT

Accurate estimation of depth map leads to precise three-
dimensional shape recovery. In this paper, we present a new 
focus measure for calculation of depth map. This new focus 
measure is based on an optical transfer function 
implemented in the frequency1 domain and it has shown 
robustness in the presence of noise as compared to the 
earlier focus measures. The results of the proposed focus 
measure have shown considerable improvement in the 
presence of noise with respect to other focus measures. 
 
Index Terms—Focus measure, noise, robust

1. INTRODUCTION 
 
The objective of shape from focus is to find out the depth of 
every point of the object from the camera lens. The depth of 
every point is calculated by finding the best focused points, 
i.e., sharpest pixel values. Shape from focus (SFF) is one of 
the image processing techniques that uses depth map to 
recover 3D shape of the object. 

In SFF, a sequence of images that correspond to 
different levels of object focus is obtained. A sharp image 
and the relative depth can be retrieved by collecting the best 
focused points in each image. The absolute depth of object 
surface patches can be calculated from the focal length and 
the position of lens that gave the sharpest image of the 
surface patches. The depth or best focus is obtained by 
using some focus measure. 

So every SFF scheme relies on a Focus Measure 
operator and an approximation technique. Focus Measure 
operator plays a very important role for three dimensional 
shape recovery because it is the first step in calculation of 
the depth map. So a focus measure operator should provide 
a very good estimate of the depth map by showing 
robustness even in the presence of noise. 

One factor to be kept in mind is that we have finite 
number of images in the image sequence. The information 
obtained from them does not represent actual object 
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specification especially in the case of geometrically 
complex objects. The only way for obtaining accurate 
results from SFF techniques is estimating object 
specifications in the gap between images in the image 
sequence. Hence, the role of first depth map obtained by 
using some specific focus measure is increased manifolds. 
 

2. RELATED WORK 
 
The related work in SFF can easily be divided into two 
sections, namely, the focus measure operators and the 
approximation methods. Brief description of these sections 
is given below. 
 
2.1. Focus Measure Operators 
A Focus Measure operator is one that calculates the best 
focused point in the image. The focus measure calculates 
the best focused point by evaluating the sharpness of a pixel 
locally. Franz Stephan Helmli and Stefan Scherer [1] 
summarized the traditional focus measures while 
introducing three new focus measure operators. 

The most commonly used focus measure is the 
Laplacian operator. Laplacian is obtained by adding second 
derivatives in the x and y directions. Modified Laplacian 
(ML) [2] is computed by adding squared 2nd derivates. In 
order to handle possible variations, Shree K. Nayar and 
Yasuo Nakagawa suggested a variable spacing (step) 
between the pixels used to compute derivatives. Since 
Laplacian yields bad results for weak textured images 
therefore to improve robustness for weak-texture images, 
Shree K. Nayar and Yasuo Nakagawa [2] presented focus 
measure at (x,y) as Sum of ML (SML) values in a local 
window (about 5x5). 

Tenenbaum Focus Measure is gradient magnitude 
maximization method that measures the sum of squared 
responses of horizontal and vertical Sobel masks. Variance 
Focus Measure is based on the variance of gray-level which 
is higher than that in a blur image. Mean Method Focus 
Measure [1] depends on the ratio of mean grey value to the 
center grey value in the neighborhood. Curvature Focus 
Measure [1] exploits that the curvature in a sharp image is 
expected to be higher than that in a blur image. The surface 
is approximated using a quadratic equation and coefficients 
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are calculated using a least squares approximation 
technique. Point Focus Measure [1] is approximated by a 
polynomial of degree four and its extremum is estimated. 

 
2.2. Approximation Techniques 
A more accurate depth range image can be obtained using 
some approximation reconstruction scheme on the results 
acquired from some focus measure operator. Joungil Yun 
and Tae-Sun Choi [3] summarized various approximation 
techniques. Some of them include Traditional SFF, Focused 
Image Surface etc. 

Many approximation techniques have been reported in 
the literature lately. Generally, those approximation 
methods are based on machine learning tools, especially 
fuzzy logic, neural network and dynamic programming. 
 

3. METHOD 
 
This paper introduces a new focus measure for the 
estimation of depth map. This is done by finding out the 
best frame number for each pixel. 

Since the focus measure calculates the sharpest pixels 
in the image hence their success depends on their ability to 
calculate the sharpness value of each pixel. Therefore, 
algorithms and techniques based on calculating sharpness 
and edges in an image automatically become potential 
candidates for the selection of focus measure. 

We introduce a new focus measure based on bipolar 
incoherent image processing and we call it Optical Focus 
Measure and denote it as FMO. Ting-Chung Poon and 
Partha P. Banerjee [4] have discussed bipolar incoherent 
image processing in detail. Generally, there are severe 
limitations of incoherent processing with standard 
incoherent systems in that the Optical Transfer Function 
achievable is the autocorrelation of the pupil function. Or 
equivalently the Point Spread Function is real non-negative. 
Among the acousto-optic heterodyning image processing, a 
number of novel techniques have been devised to implement 
bipolar point spread functions in incoherent systems. These 
techniques are usually referred to as bipolar incoherent 
image processing in the literature. 

The sharpness of pixel values in the image is found by 
convolving the spectrum of the intensity image with the 
transfer function which in our case is Optical Transfer 
Function (OTF). The computed image [ic(x, y)] is given as: 

ic (x, y) = Re [| 0(x, y)|2 * h (x, y)}]   (1) 
where ‘*’ indicates convolution and: 

| 0(x, y)|2 = Spectrum of the Intensity Image 
h (x, y) = Transfer Function 

Transfer function is basically the OTF which is 
calculated in frequency domain using either Fourier or 
Cosine transform. Transfer function h  (x, y) is given as: 

h (x, y) = F-1 {OTF (kx, ky)} 
where: 

OTF (kx, ky) = Optical Transfer Function 

kx, ky = Spatial frequencies 
So finally we can write the computed image as: 
ic (x, y) = Re [F-1 {F {| 0(x, y)|2} OTF (kx, ky)}] (2) 

where F is for Fourier Transform and F-1 is for Inverse 
Fourier Transform. The OTF itself is calculated as: 

OTF (kx,ky)= p1(x’,y’)p2(x’+fkx/k0,y’+fky/k0)dx’dy’   (3) 
where f is the focal length of the lenses and k0 is the wave 
number of light. The OTF is the cross correlation of the two 
pupils (p1 and p2) in the incoherent optical system [4]. 
Hence, the point spread function becomes bipolar. 

In equation (3) above, p1 is a difference of Gaussian 
aperture function and p2 is a small pin hole aperture. p1 is 
given as [4]: 

p1 = exp[-a1(x2 + y2)]-exp[-a2(x2 + y2)] 
where a1 and a2 are constants. p2 is given as [4]: 

p2 = (x,y) 
For implementation purposes, equation (3) can be 

rewritten as: 
OTF (kx,ky)=exp[- 1(kx

2+ky
2)]-exp[- 2(kx

2+ky
2)] (4) 

where: 
1 = a1 (f/ k0)2

2 = a2 (f/ k0)2 

 
The above equation shows that OTF is basically a 

band-pass filter with gradual cut-off frequency. Therefore, 
this filtering provides sharpness at pixel points in an image. 
The filtering operation depends upon 1 and 2. Sharp focus 
measure is obtained by adjusting these two parameters. The 
high frequency component of an image area is determined 
by processing in the Fourier domain and analyzing the 
frequency distribution. Fourier transform used to be 
computationally expensive but with high speed personal 
computers available today, this complexity has decreased 
exponentially and it is not a matter of concern anymore. The 
processing in the frequency domain is particularly useful for 
noise reduction as the noise frequencies are easily filtered 
out. Fig 1 shows the filter with 1 = 0.01 and 2 = 0.1 and 
the corresponding Fourier spectrum of the “Test Image” 
(Test image shown in fig 2). 

 
Fig 1: Filter design & Fourier spectrum of the Image 

The next step is to select the best focused point in the 
sequence of images. Equation 4 is used to compute the 
focus measure at a point (i,j) in a small window around (i,j) 
and the value at (i,j) is replaced by the sum of computed 
values of all pixels in that window. This operation is similar 
to that used for Sum of Modified Laplacian [2]. We have 
used optimum window size [5] for our experiments. 
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Therefore, the final focus measure is given as FMO which 
stands for Optical Focus Measure and is calculated as: 

 
Ni

Nix

Nj

Njy
c y) (x, i  j)(i, FMO

 

4. RESULTS & DISCUSSION 
 
The proposed focus measure is tested with various types of 
images including a “Test” image, a sequence of 97 
simulated cone images and a sequence of 97 real cone 
images. The resolution of the simulated and real cone 
images is 360x360 pixels. The real cone is taken from the 
CCD camera system. The real cone object was made of 
hardboard with black and white stripes drawn on the 
surface. The results are compared with 3 other operators, 
i.e., SML, Tenenbaum and Gray Level Variance (GLV). 

Fig 2(a) shows the “Test” image with Gaussian noise 
with zero mean and variance of 0.5 added to the image. We 
can see from Fig 2(b), (c) and (d) that results for both the 
SML and Tenenbaum have deteriorated while the proposed 
optical focus measure (FMO) still shows very good result. 

  
(a) Test Image       (b) Tenenbaum 

  
 (c) SML   (d) FMO

Fig 2: Applying focus measure operators on test image 

Fig 3 shows real cone image with Gaussian noise 
(mean=0, variance=0.005) added and the corresponding 
processed images with Tenenbaum, SML and the FMO. 

Hence, as clear from the figures, the performance of 
Tenenbaum and SML degrades when noise is added to the 
images. However, FMO performs satisfactorily well. In real 
time applications, various type of noise like Rayleigh, 
exponential, uniform, shot, speckle, Gaussian etc may 
occur. Therefore, a robust focus measure is required to deal 
with noisy situations. 

As for depth map calculation, consider sequence of 97 
simulated cone images. Fig 4(a) & (b) show two of the 
frames for the simulated cone. Fig 4(c) & (d) show the 
depth map using SML & FMO without noise addition and 

Fig 4(e) & (f) show the depth map using SML & FMO with 
Gaussian noise added. 

  
    (a) Gaussian noise added                (b) Tenenbaum 

  
 (c) SML   (d) FMO

Fig 3: Applying various focus measures on real cone image 

   
(a) Frame 50  (b) Frame 90 

 
(c) SML  (d) FMO

 
(e) SML  (f) FMO

Fig 4: Depth maps for the simulated cone object 

It can be seen from the figures that the 3D depth map 
obtained using FMO is much smoother as compared to that 
of SML when there is no noise added to the images. Also, in 
the presence of Gaussian noise, the depth map obtained 
using FMO is very clear but that of SML has degraded 
significantly. The degradation of SML is due to the fact that 
the noise has enhanced individual pixel values resulting in 
spikes in the depth map. On the other hand, the result for 
FMO is excellent in comparison to SML. 

Now consider the sequence of 97 images of real cone. 
Fig 5(a) & (b) show the depth maps for real cone images 
with Gaussian noise added. As can be seen from the figures, 
SML results deteriorate significantly while FMO result is 
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degraded but still recognizable. These results can be 
processed further by applying median or wiener filter etc. 
However, this type of post-processing does not improve the 
result because the images are already processed with the 
noise and the noise values are now the inherent property of 
each of the pixel values. 

 
(a) SML  (b) FMO 

Fig 5: Depth maps for the real cone object 

Another solution to tackle the noise is pre-processing 
the images with some type of filtering. We used Wiener 
filter. It filters an intensity image that has been degraded by 
constant power additive noise. Since we already know that, 
in our case, this additive noise is Gaussian noise, therefore, 
we use this information for implementing this filter. 
However, we found that there is little improvement in the 
results of focus measures after the usage of Wiener filter. 
Still, the best performance is shown by FMO. 

We used Mean Square Error (MSE), Root Mean Square 
Error (RMSE) and correlation to compare the results of 
SML, GLV and the proposed FMO. The MSE is a distortion 
metric while RMSE is simply the square-root of MSE. 
Correlation provides a measure of similarity of two images. 
For better graphic representation, we have used the 
normalized values for MSE and RMSE. 

We found that the MSE and RMSE values are lowest 
for the proposed focus measure. Also, we found that the 
correlation coefficient of FMO is highest among all the three 
focus measures. Table 1 shows the comparison results for 
the above mentioned metric measures for the various focus 
measures in the presence of Gaussian noise. However, we 
found that the results of SML and Tenenbaum are very 
similar in nature. So, we ignore Tenenbaum and we show 
the results for the three focus measures, namely, SML, GLV 
and FMO. Figure 6 shows the corresponding visual 
representation of table 1. 

 MSE(Norm) RMSE(Norm) Correlation 
SML 0.5244 0.7209 0.5901 
GLV 0.3900 0.6157 0.6379 
FMo 0.2883 0.4739 0.7633 

Table 1: Metric measures for Gaussian Noise 

It can be seen from the above table that the lowest 
correlation value is for SML followed by GLV and then 
FMO. So in terms of correlation, best results are shown by 
FMO followed by GLV and then SML. Similarly, for MSE 
and RMSE, the lower values mean the result is better. 
Again, it can be observed from table 1 that the lowest MSE 

and RMSE values are depicted by the proposed focus 
measure FMO followed by GLV and then SML. 

Another important factor is the selection of Parameter 
values for FMO. The two sigma parameters (eq. 4) define 
the frequency that is effectively blocked. The selection of 
these two parameters directly depends on the frequency 
characteristics of the type of noise. Results shown in this 
paper use 1= 0.01 & 2= 0.1. 
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Fig 6: Comparison of Focus Measures 

 
5. CONCLUSION 

 
A new focus measure is introduced in this paper. This focus 
measure is based on an optical transfer function which has 
band-pass characteristics. We tested and compared this 
focus measure using simulated cone images and real cone 
images [6]. The results show that this new focus measure 
tends to perform better than the traditional focus measures 
(SML, Tenenbaum, GLV) in the presence of noise. 
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