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ABSTRACT

We present a high-speed dense stereo algorithm that achieves both
good quality results and very high disparity estimation throughput on
the graphics processing unit (GPU). The key idea is a variable center-
biased windowing approach, enabling an adaptive selection of the
most suitable support patterns with varying sizes and shapes. As the
fundamental construct for variable windows, a truncated separable
Laplacian kernel approximation is proposed for the efficient pixel-
wise weighted cost aggregation. We also present a number of critical
optimization schemes to boost the real-time speed on GPUs. Our
method outperforms previous GPU-based local stereo methods and
even some methods using global optimization on the Middlebury
stereo database. Our optimized implementation completely running
on an Nvidia GeForce 7900 graphics card achieves over 605 million
disparity estimations per second (Mde/s) including all the overhead,
about 2.1 to 12.1 times faster than the existing GPU-based solutions.

Index Terms— Stereo vision, real-time dense stereo, GPGPU

1. INTRODUCTION
Depth from stereo is an important computer vision topic that has at-
tracted intensive research interests for decades. A substantial amount
of work has been done on stereo, which is systematically surveyed
and evaluated by Scharstein and Szeliski [1]. In general, casting
a stereo problem as a global optimization problem usually leads to
high quality disparity estimation results, but most of these global
techniques are too computationally expensive for online processing.
Real-time stereo applications today still largely rely on some local
methods together with a winner-takes-all (WTA) decision strategy.

Typically, local window-based approaches choose to aggregate
the matching cost over a given support window to increase the ro-
bustness to noise and texture variation. However, to obtain accurate
results at depth discontinuities as well as on homogeneous regions,
an appropriate support window for each pixel should be decided
adaptively. To this end, several local methods have been proposed.
For instance, Fusiello et al. [2] performed the correlation with nine
windows anchored at different points and retained the disparity with
the smallest matching cost. However, this method and its gener-
alized technique, i.e., shiftable windows [1] usually require a rela-
tively large number of candidate support windows to achieve good
estimation results, and moreover their box-filters cannot adequately
differentiate the impact of support pixels with different spatial lo-
cations. Recently, Yoon and Kweon [3] proposed a state-of-the-art
local window method yet at a very demanding computational cost,
where pixel-wise support-weights are defined using a Laplacian ker-
nel, and they modeled the grouping strength for each support pixel.

Nonetheless, solely resorting to local methods is not a cure-all
for achieving dense stereo at high video rate. In fact, until recently

software-only real-time stereo systems begin to emerge, which ex-
ploit assembly level instruction optimization using Intel’s MMX ex-
tension, but few CPU cycles are left to perform other tasks including
high-level interpretation of the stereo results. Harnessing some pow-
erful built-in features of the modern graphics processing unit (GPU),
Yang et al. first proposed a pyramid-shaped correlation kernel [4]
and small-scale adaptive support windows [5]. Though very impres-
sive disparity estimation throughput is obtained on GPUs, these tech-
niques cannot strike an optimal quality balance between homoge-
neous and heterogeneous regions. Later on, Gong and Yang [6] pro-
posed an image-gradient-guided correlation method with improved
accuracy, while still maintaining real-time speed on GPUs. Inspired
by [3], Wang et al. [7] recently introduced an adaptive aggregation
step in a dynamic-programming stereo framework. The high-quality
results are obtained by their complicated cost aggregation and global
optimization strategy, and a real-time speed is enabled by utilizing
the unique processing capabilities of both the CPU and the GPU.

This paper presents a novel stereo algorithm that is specially
designed to achieve the competitive disparity quality and the high-
speed execution on GPUs. At the heart of the proposed algorithm is
a variable center-biased windowing approach, enabling an adaptive
selection of the most suitable support patterns for different regions.
Our method is in spirit similar to the variable window approach [8],
but it is much faster by avoiding the costly dynamic programming.

Concerning the real-time speed, the proposed method is by far
the fastest among all these GPU-based approaches. The major con-
tributing factors are three-folds: 1) our highly efficient core stereo
processing, 2) a number of special implementation optimizations
on the GPU, and 3) upgrading to the advanced graphics hardware.
Completely running on an Nvidia GeForce 7900 graphics card, our
optimized implementation achieves over 605 million disparity esti-
mations per second (Mde/s), compared to a maximum speed of 289
Mde/s in [5], 117 Mde/s in [6], and 50 Mde/s on CPU+GPU in [7].

2. THE PROPOSED STEREO MATCHING ALGORITHM
Following the taxonomy in [1], our stereo algorithm contains three
major steps: matching cost computation, cost aggregation, and fi-
nally disparity selection. In the first step, a matching cost for ev-
ery possible disparity value of each pixel is computed. To suppress
the influence of mismatches during the subsequent cost aggregation
step, we adopt the truncated absolute difference (TAD) as the match-
ing cost measure. Similar to most local approaches, the proposed al-
gorithm places a key emphasis on the cost aggregation step to reduce
the ambiguity in matching, and we will therefore focus on this core
part for the remaining of this Section. In the last disparity selection
step, a local WTA optimization is performed at each pixel, simply
choosing the disparity associated with the minimum cost value. The
entire framework of our stereo algorithm is illustrated in Fig. 1.

The proposed cost aggregation step is composed of two parts: 1)
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Fig. 1. The framework of our proposed stereo algorithm and its optimized implementation (processing elements and data flow) on the GPU.

efficient separable quadrant-based cost aggregation, and 2) adaptive
selection of variable center-biased windows.

2.1. Efficient Separable Quadrant-Based Cost Aggregation
The goal of this stage is to construct an elementary set of window
costs, so that a useful range of variable center-biased support win-
dows can be easily built upon this basic set in the subsequent stage.
Instead of using box-filters commonly adopted for the window cost
aggregation [2], we propose a truncated separable approximation to
an isotropic 2D Laplacian kernel for this task. The latter proves its
effectiveness in a state-of-the-art local stereo method [3] by appro-
priately deciding the strength of grouping for each pixel. To achieve
a good trade-off between the quality and the speed, we only attempt
at computing the adaptive support-weight for each pixel based on
the geometric proximity in [3], while leveraging the variable center-
biased windows to ensure competitive quality results in both homo-
geneous regions and depth discontinuities.

Strictly speaking, the classical Laplacian kernel is non-separable
because of its isotropic Euclidean distance term. This actually ren-
ders its exact implementation costly. To ease the computational cost,
we propose a separable approximated variant to the 2D isotropic
Laplacian kernel (see Fig. 2(a)), as follows,
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where Δegpq is an approximated Euclidean distance between p and
q in the 2D image domain and γp determines the fall-off rate of the
kernel. From (1), it is apparent that a separable approximation to the
2D Laplacian kernel (SA-LAP) is obtained. As a result, SA-LAP can
be very efficiently implemented by two cascaded 1D filterings along
the x and y axes. It reduces the computational load significantly
from O(M×N) to O(M+N), when an M×N kernel is considered.

To tackle the “foreground-fattening” problem near depth discon-
tinuities due to a large centralized window, we propose to partition
it into four slightly overlapping regions (or quadrants), each con-
taining the central pixel as shown in Fig. 2(b). With these four el-
ementary support windows, a set of quadrant-based matching costs
(i.e., Ci[x, y], i = 0, 1, 2, 3) can be computed for the central pixel
to avoid filtering across strong edges. These four costs can be more
rigorously derived by 2D convolutions as given in (2), where D[x, y]
denotes the intensity-truncated absolute difference image, and f [x, y]
is the finite-length impulse response of the proposed SA-LAP de-
fined over an N×N square window. By truncating f [x, y] properly
to each (W + 1)×(W + 1) (W = (N−1)/2) region spanned by

the shifted support window, four different truncated SA-LAP filter
kernels are reached (i.e., fi[x, y], i = 0, 1, 2, 3 in (2)), and a sample
support-weight map of f0[x, y] is shown in Fig. 2(c).8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

C0[x, y]=D[x, y] ∗ ∗f0[x, y]=
WX

k=0

0X
l=−W

D[x−k, y−l]f [k, l]

C1[x, y]=D[x, y] ∗ ∗f1[x, y]=
WX

k=0

WX
l=0

D[x−k, y−l]f [k, l]

C2[x, y]=D[x, y] ∗ ∗f2[x, y]=
0X

k=−W

0X
l=−W

D[x−k, y−l]f [k, l]

C3[x, y]=D[x, y] ∗ ∗f3[x, y]=
0X

k=−W

WX
l=0

D[x−k, y−l]f [k, l] ,

(2)
In fact, we also find that the truncated SA-LAP idea is concep-

tually close to the non-linear Kuwahara filter [9], which is an edge-
preserving noise-reduction filter, and the configuration of four re-
gions in both methods are even similar. However, our method does
not need the variance computation, and moreover, we stress the con-
tribution of pixels closer to the central one by a center-biased filter.

2.2. Adaptive Selection of Variable Center-Biased Windows
After the elementary set of quadrant-based costs are computed using
(2), we propose to construct three categories of center-biased support
windows with variable sizes and shapes (unlike the fixed-sized win-
dows in [2]). These three categories are devised to approximate the
ideal support configuration for homogeneous areas (Fig. 2(d)), depth
edges (Fig. 2(e-h)), and depth corners (Fig. 2(i-l)), respectively. Sub-
sequently, best patterns of minimum cost values are selected from
each configuration category, and their respective size-penalized av-
erage window costs (i.e., C̄a, C̄b, and C̄c) are defined in (3). For
conciseness, we omit [x, y] from notations whenever appropriate.8>>><
>>>:

C̄a[x, y] = (C0 + C1 + C2 + C3) / (4 · F )

C̄b[x, y] =
min (C0+C1,C0+C2,C2+C3,C1+C3)

2 · F
+ α

C̄c[x, y] = min (C0,C1,C2,C3) /F + β ,
(3)

where F ≡
PW

k=0

PW

l=0
f [k, l], and 0 < α < β.

In (3), we normalize the window costs by the aggregated support-
weights, since we will be comparing windows of different sizes. This
normalization factor also helps to scale up the data precision range
when implemented on GPUs. An additive penalty term α (β) for
C̄b (C̄c) is also included in (3) to explicitly implement bias to larger

VI - 569



windows. As discussed in [8], this term is crucial in untextured re-
gions, where the normalized window costs are approximately equal
for variable support patterns, and larger windows should be preferred
for a reliable performance. The empirical penalty parameters α and
β are set constant for all our experiments.

Once the three best representative patterns are decided from (3),
we choose the minimum value of them as the cost for the central
pixel, i.e., C̄min[x, y] in (4), enabling the adaptive selection of the
most suitable support window for the pixel at [x, y].

C̄min[x, y] = min
`
C̄a, C̄b, C̄c

´
. (4)

2.3. Accelerating Cost Aggregation by 1D Filtered Data Reuse
As the fundamental construct of our stereo algorithm, the truncated
SA-LAP is also very fast to compute, because f0[x, y] and f1[x, y] in
(2) are not only separable, but also they share the same 1D horizontal
convolution kernel in the x-direction, i.e.,j

C0[x, y] = D[x, y] ∗ ∗f0[x, y] = D[x, y] ∗ f0[x] ∗ f0[y]

C1[x, y] = D[x, y] ∗ ∗f1[x, y] = D[x, y] ∗ f1[x] ∗ f1[y] ,
(5)

let fL[x] = f0[x] ≡ f1[x] and CL[x, y] = D[x, y] ∗ fL[x], thenj
C0[x, y] = CL[x, y] ∗ f0[y]

C1[x, y] = CL[x, y] ∗ f1[y] ,
(6)

so only three 1D convolutions are needed to obtain C0[x, y] and
C1[x, y]. As shown in Fig. 1, the same is valid for C2[x, y] and
C3[x, y]. Hence, the major complexity of our stereo algorithm only
consists of 6-times 1D image filtering, and this regular pixel-wise
processing can be greatly accelerated by harnessing the powerful
parallel processing capability inherent in today’s GPUs.

3. AN OPTIMIZED IMPLEMENTATION ON THE GPU
To greatly boost the real-time computation speed, we have carefully
implemented the proposed stereo algorithm on the GPU, by utilizing
its powerful vector processing capability and speed-optimized inter-
nal data representation. The entire algorithm is implemented with
Microsoft Direct3D API and the high-level shader language (HLSL).
HLSL is used to program parallel vertex processors and fragment
processors, with the latter being the cornerstones of the high-speed
stereo on GPUs nowadays. Due to the limited space, interested read-
ers are referred to [5] for the review of the GPU rendering pipeline.

To maximize data-level parallelism, we use the GPU’s efficient
4-channel processing to compute four disparity hypotheses at a time
and store the TAD costs into different color channels (refer to Fig. 1),
as in [5]. Consequently, to search over L disparity hypotheses, only
�L/4� rendering passes are needed. Moreover, exploiting the built-
in bilinear texture lookup capability in the GPU, we approximate
the 1D truncated SA-LAP filtering (with a kernel size of W +1) by
W/2 bilinear texture lookups and one nearest texture sampling, plus
the weighted summations and normalization within one rendering
pass. Considering the fact that the rasterizer contains eight dedicated
texture coordinate interpolators, we shift the computation of support
pixel coordinates from pixel shaders (PS) to vertex shaders (VS) and
the rasterizer (R.) for hardware-accelerated coordinate interpolation.

For the high-speed streaming data storage and access, we store
the intermediate results in a 8-bit per-channel texture format, though
fragment processors perform internal computation in 32-bit floating
point numbers. Since the TAD is adopted as our matching cost mea-
sure, the associated threshold τ can be used to adequately scale the
dynamic range of the aggregated cost. Hence, the quality degrada-
tion due to the limited data precision noticed in [5] is significantly
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Fig. 2. Illustration of the proposed variable center-biased window-
ing approach. (a) The 2D support-weight map of our SA-LAP with
γp =5.0, N =33 (b) The proposed edge-preserving quadrant-based
support windows (Region 0-3) (c) A sample support-weight map of
Region 0 (d) The support configuration category a (e-h) The support
configuration category b (i-l) The support configuration category c.

reduced. As another important scheme for the acceleration, the ad-
vanced Render-to-Texture technique in Direct3D is adopted, elimi-
nating the overhead of copying intermediate results from the frame
buffer to the textures. The built-in depth test (or Z-test) is enabled in
our implementation as well to accelerate the cost-sorting based dis-
parity selection, similar to [5]. In Fig. 1, all the deployed rendering
passes in our optimized implementation are highlighted.

4. EXPERIMENTAL RESULTS

We first evaluate the disparity estimation quality of the proposed ap-
proach using the benchmark Middlebury stereo database [10]. The
parameters in our stereo algorithm are set constant across all exper-
iments. Specifically, we set γp of the proposed SA-LAP to 5.0 and
N to 33, so each truncated support window has an identical size of
17×17. The threshold τ used for TAD is set to 20 for the test stereo
data, but it can be adapted to cope with different image noise in-
tensity and non-diffuse surfaces in other stereo images. The penalty
parameters α and β are set to 0.02τ and 0.04τ , respectively.

Using the online evaluation service [10], we list the quantitative
results of our approach (9-window) and those of some other methods
roughly in descending order of performance in Table 1 (as obtained
from [10]), where the numbers represent error rates (the smaller the
better). Table 1 shows that our local area-based approach even out-
performs some stereo methods using global optimization (e.g., Scan-

VI - 570



Table 1. Quantitative comparison of the proposed method with other approaches using the benchmark Middlebury stereo database.

Algo rithm
T sukub a S awto o th Venus Map

no no cc . untex. d isc . no no cc . untex. d isc . no no cc . untex. d isc . no no cc . d isc .

Relax+occl. 6.33 6.63 22.93 1.51 0.29 15.06 1.44 1.24 19.11 0.43 5.99
Ours (9-window) 3.95 4.77 14.42 1.73 0.82 7.83 5.04 10.23 10.12 0.65 8.51

Stochastic  diffusion 3.95 4.08 15.49 2.45 0.90 10.58 2.45 2.41 21.84 1.31 7.79
Genetic 2.96 2.66 14.97 2.21 2.76 13.96 2.49 2.89 23.04 1.04 10.91

SSD+M F [1 ] 5.23 3.80 24.66 2.21 0.72 13.97 3.74 6.82 12.94 0.66 9.35
Ours (4-window) 7.63 13.00 14.30 2.22 1.79 8.30 9.04 19.42 9.20 0.66 8.60
Gradie nt-guide d [6] 4.91 5.86 12.60 2.38 2.82 7.92 9.43 19.39 20.71 1.24 9.96

Scanline  Opt. [1 ] 5.08 6.78 11.94 4.06 2.64 11.90 9.44 14.59 18.20 1.84 10.22
Dynamic  P rog. [1 ] 4.12 4.63 12.34 4.84 3.71 13.26 10.10 15.01 17.12 3.33 14.04

MIP [5] 7.07 10.4 13.3 2.33
AW4 [5] 9.68 5.79 15.7 0.91

(a) Tsukuba (b) Map

(c) Sawtooth (d) Venus

Fig. 3. Our estimated disparity maps for Middlebury test data set.

line optimization [1]) and the iterative stochastic diffusion algorithm.
We have also collected the results of local stereo methods imple-
mented on GPUs as the bold items in Table 1 (blank fields are not
available in these papers), and our approach compares favorably with
them for all sorts of regions (nonocc., untex., and disc.). Particularly,
it has a good performance near depth discontinuities (see Fig. 3), be-
cause of our adaptive selection of variable center-biased windows.

As a comparison, we report the results of a simplified variant
(4-window) to our proposed 9-window method, relying on the four
corner patterns in Fig. 2(i-l). This 4-window variant preserves the ac-
curacy at depth discontinuities, but the error rates for the untextured
regions are doubled, lacking of a versatile set of variable windows.

To examine the execution speed on the GPU, we follow the same
approach in [5] by varying the size of stereo images and the dispar-
ity search range. Our optimized implementation runs on an Nvidia
GeForce 7900 graphics card with 512 MB video memory, housed in
a 3.2 GHz PC with 1 GB main memory. The test results in Table 2
show that our approach can reach 605 Mde/s including the overhead
to download images and read-back the disparity map, which is sev-
eral times faster than today available stereo methods on GPUs.

5. CONCLUSION AND FUTURE WORK
We propose a real-time stereo algorithm with variable center-biased
windows, which is built upon a truncated separable Laplacian kernel.

Table 2. Speed test on an Nvidia GeForce 7900 graphics card.

Size Disp.
Range

Specific Execution Time (ms) Overall Performance
Algorithm Download Read-back Total Time fps Mde/s

512 2

16 6.62 0.72 x 2 0.81 8.88 113 472

32 13.23 0.72 x 2 0.81 15.49 65 542

64 26.27 0.72 x 2 0.81 28.53 35 588

96 39.30 0.72 x 2 0.81 41.56 24 605

256 2

16 2.02 0.17 x 2 0.25 2.61 383 402
32 3.92 0.17 x 2 0.25 4.52 221 464
64 7.60 0.17 x 2 0.25 8.20 122 512
96 10.89 0.17 x 2 0.25 11.48 87 548

Our method achieves quality results for both homogeneous regions
and depth discontinuities, while its optimized implementation on the
GPU is significantly faster than the existing GPU-based approaches.

Future work will focus on further improving the quality and the
speed trade-off of our method on programmable graphics hardware.
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