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Abstract—Autonomous functions for wheelchair-mounted 
robotic manipulators (WMRMs) allow a user to focus more on 
the outcome from the task – for example, eating or drinking, 
instead of moving robot joints through user interfaces. In this 
paper, we introduce a novel personal assistive robotic system 
based on a position-based visual servoing (PBVS) approach. The 
system was evaluated with a complete drinking task, which 
included recognizing the location of the drink, picking up the 
drink from a start location, conveying the drink to the proximity 
of the user’s mouth without spilling, and placing the drink back 
on the table. For a drink located in front of the wheelchair, the 
success rate was nearly 100%. Overall, the total time of 
completing drinking task is within 40 seconds. 

Keywords—object recognition; wheelchair; robotics; 
manipulation; path planning 

I. INTRODUCTION 
Control of the user interface may be the major barrier to 

using a wheelchair-mounted robotic manipulator (WMRM) for 
people with upper extremity impairments when performing 
activities of daily living (ADL). The user interface is supposed 
to allow the user to focus more on the tasks to be performed 
instead of how to control the robot [1]. For example, the focus 
of eating and drinking tasks should be on the pleasure of food 
and drink instead of how to convey the food or drink to one’s 
mouth. 

There are two ways to overcome this barrier: Image-Based 

Visual Servoing (IBVS) and Position-Based Visual Servoing 
(PBVS) [2]. In the IBVS, the gripper is guided toward an 
object at the region of interest through feedback from a camera 
mounted on the robot gripper or wrist. The IBVS has been 
integrated into WMRMs for pick-and-place task by University 
of South Florida [3] and University of Massachusetts Lowell 
[4]. The object location is continuously recognized by the 
image in order to adjust robotic movement until the gripper 
picks up the object. The PBVS uses images to localize the 
object in 3D space, and plans a trajectory toward the object 
with knowledge of the environment [2]. The camera can be 
mounted on the wheelchair or robot shoulder to provide a 
better perspective of the object and its surroundings. The major 
difference between these two approaches is the handling of 
occlusion and starting location of movement. The PBVS has 
the advantage of finding a path and grasping plan even when 
the object is occluded from the starting location or folding 
position [5]. Currently, there is no PBVS integrated into 
WMRMs. 

In this paper, we introduce a novel personal assistive 
robotic system which is based on the mechanical design of the 
Personal Mobility and Manipulation Appliance (PerMMA) 
developed by the University of Pittsburgh [6] and the software 
architecture of the Home Exploring Robotic Butler (HERB) 
developed by Carnegie Mellon University [5]. This system is 
based on the PBVS approach using Multiple Object Pose 
Estimation and Detection (MOPED) to identify the distance 
and pose of objects and Constraint Bidirectional Rapid 
Random Tree (CBiRRT) as the path planning strategy. The 
system can be evaluated by a complete drinking task which 
includes picking up the drink from a starting location, 
conveying the drink to the proximity of the user’s mouth 
without spilling, and placing the drink back on the table. 

II. RELATED WORKS 
The mechanical system was designed similarly to the 

PerMMA robot. It is composed of two moveable WMRMs 

Research supported by the National Science Foundation, the US 
Department of Veterans Affairs and the National Institute for Disability and 
Rehabilitation Research.  

Hongwu Wang and Cheng-Shiu Chung are with the Human Engineering 
Research Laboratories, VA Pittsburgh Healthcare System and University of 
Pittsburgh, Pittsburgh, PA 15206 USA.  

Rory A Cooper. Author is with the Human Engineering Research 
Laboratories, VA Pittsburgh Healthcare System and University of Pittsburgh, 
Pittsburgh, PA 15206 USA (phone: 412-822-3700; fax: 412- 822-3699; e-
mail: rcooper@pitt.edu). 

2013 IEEE International Conference on Rehabilitation Robotics June 24-26, 2013   Seattle, Washington USA

978-1-4673-6024-1/13/$31.00 ©2013 IEEE 



 

 

mounted on a track located around the wheelchair seat so that 
the manipulators can slide to the back of the chair while 
driving through a narrow hallway or door. Three modes of the 
user interface were developed: local user, remote user, and 
cooperative control mode. Local user mode allows the 
wheelchair user full WMRM control on PerMMA by using a 
touchpad or via speech recognition. Remote user mode shifts 
the authority of WMRM control to a remote operator, who 
could be a caregiver or family member of the wheelchair user. 
In this way, caregivers can remotely complete ADL through 
the visual feedback from the cameras on the robot shoulders. 
Cooperative mode takes the advantages of better perception 
form the local wheelchair user and the better dexterity from the 
remote operator. A user study was conducted in performing 
ADL with PerMMA using keyboard, keypad, and remote 
operation and voice control and touch screen interfaces are 
under clinical trial. A previous focus group study reveals that 
users prefer to control PerMMA by themselves [6]. However, 
with the complexity of the system, it is difficult for all users to 
use the current interfaces to perform ADL. The long-term goal 
of current work is to integrate autonomous functions with other 
interfaces to provide smart assistance. The current work is the 
first approach to develop autonomous functions for PerMMA. 

The WMRM used in this novel system is an iARM, 
manufactured by Exact Dynamics (Didam, the Netherlands). 
The iARM is a six degree-of-freedom (DOF) robotic arm with 
two-fingered hand, and is an upgraded version of the Manus 
ARM. The iARM is lighter than Manus ARM mainly due to 
removal of gravity compensation springs. It can be controlled 
by keypad, joystick, or single-button switches, and can be 
mounted on a powered wheelchair with a camera mounted on 
its shoulder to detect objects [7], [8]. 

The object recognition algorithm used in this system is 
MOPED, which is reliable and robust in complex 
environments with low latency [9]. The pose and distance of 
the object can be estimated by a single image. The image is 
first processed by extracting features with Scale-Invariant 
Feature Transform (SIFT). The extracted features are 
compared with the stored SIFT features using an offline 
learning procedure. The matched features are clustered by 
Iterative Clustering Estimation, which iteratively uses Random 
Sample Consensus or Levenberg-Marquardt to estimate the 
object pose hypotheses. These pose estimations are clustered 
with an implemented object hypothesis scoring function based 
on M-estimator theory to eliminate the outliers. By taking the 
advantage of parallel computation of GPU/CPU hybrid 
architecture, low latency can be achieved [9].  

Following the estimation of the pose and location of the 
objects, the path planning for manipulation in this system is 
Constrained Bidirectional Rapid Random Tree (CBiRRT). This 
planning algorithm is composed of three components: 
constraint representation, constraint-satisfaction strategies, and 
a general planning algorithm. The constraint can be represented 
using Task Space Regions (TSRs) representation. TSRs are 
representation of pose constraints that can be described based 
on the tasks. Moreover, TSRs are also capable of linking 
together for complex tasks or end-effector poses. For example, 
two TSRs are used while bringing the drink to the user. One 
TSR is to define the acceptable space that the drink will be 

conveyed to. Another TSR is to keep the drink upright all the 
time during the movement [10]. 

A study monitored the ADLs of an able-bodied participant 
for five days and identified 3964 activities based on the 
International Classification of Functioning, Disability and 
Health (ICF) [11]. Among these activities, the most frequent 
task for self care (d5 – ICF code) is drinking. The drinking task 
includes several of the most frequent mobility tasks for 
carrying, moving, and handling objects (d430 – d449) such as 
lifting (d4300), putting down objects (d4305), manipulating 
(d4402), and carrying in the hands (d4301). Therefore, in this 
paper, we have evaluated our system using a drinking task, 
which is one of the most frequently used self care daily tasks 
that requires complex manipulation skills. 

III. SYSTEM ARCHITECTURE 

A. Hardware 

Fig. 1. Picture of the hardware of the system 

Fig. 2. Software architecture of the system (left) and state flow of the testing 
procedure (right) 

Similar to PerMMA’s mechanical design, the iARM is 
mounted on the side of a powered wheelchair. An IEEE-1394 
fire-wire camera (Flea 2), manufactured by Point Grey 
(Richmond, British Columbia, Canada), is mounted with an in-
house manufactured holder. A Pentax TV lens with wide field 
of view (4.8mm 1:1.8) is attached to the camera. The camera is 
connected to a Lenovo laptop (CPU: 8-core i7-2960XM, 
RAM: 16GB, GPU: Quadro 1000M, running Ubuntu Linux 
10.04) for the processing of object recognition and path 
planning. The iARM is connected to a CAN Bus/serial module 
and linked to the laptop through an USB/serial conversion 
cable. Figure 1 shows the picture of the system. 



 

 

B. Software Architecture 
Inherited from HERB’s software design [5], the software 

can be described as having the following structure: sensing, 
planning, performing. The system first recognizes the object’s 
pose and location in the environment. The planning algorithm 
then searches for an optimized trajectory to pick up the object 
under the environmental geometries and WMRM kinematics 
with constraints. The trajectory is then performed on the robot 
to physically retrieve the object. 

The software architecture of this system was designed with 
two major features: expandable computational power and 
minimal human input for sensing and planning algorithms. The 
communication infrastructure and process of the sensing and 
planning algorithms are managed by the Robot Operating 
System (ROS) package, which also provides the capability of 
transferring computational processing between computers. The 
remote operator can also control the robot under this software 
structure. The touch screen control user interface can also be 
integrated into a mobile phone or tablet [5]. 

The MOPED is capable of detecting multiple objects and 
estimating their 3D poses and locations using a 640×480 
grayscale image. The detected objects are automatically placed 
into the OpenRAVE simulation environment. The OpenRAVE 
environment conducts path planning (CBiRRT), simulates 
robotic motions, and generates the trajectory. The trajectory is 
then sampled to several waypoints that contain the joint angles 
and velocities. The waypoints are sent to the iARM joint 
position control function to move through them. The driver for 
the iARM control was also developed to publish joint angular 
messages and provide robotic movement services through 
ROS.  

IV. TESTING PROCEDURE 
A drinking task was used for the preliminary evaluation of 

the autonomous function of the system for two reasons. The 
first reason is that, as previously described, this is the most 
frequent daily self care task according to [11]. The second 
reason is the complexity of the task. People without upper 
extremity impairments perform this task in seconds without 
thinking about the motion of their arm and hand. However, 
manually controlling the WMRM using the touchpad or speech 
recognition requires people with upper extremity impairments 
to combine three-dimensional vision in locating the object and 
two-dimensional movements across the tabletop, plus a “grasp” 
command to either grasp and lift or tilt the robotic hand. 
During the movement, the arm or gripper may occlude the 
target object from being grasped. These barriers make it 
difficult and time consuming to get a sip of drink. As a result, 
making an autonomous function for a drinking task not only 
saves time but also increases the quality of self-care. 

A. Subtasks 
The drinking task is simplified into four subtasks: detection 

of the drink, planning and pickup of the drink on the table, 
bringing the drink to the proximity of the user, and placing it 
back onto the table. We used a soda can as the drink for this 
task since it is a common drink, but the algorithms also work 
for other kinds of drinks. Python scripts were developed to 
control the flow of states in the drinking task and manage error 

recovery strategies. The state flow is shown in Figure 2. Any 
failure during the movement subtasks was recorded and treated 
as a failed trial. In addition, for the safety of the occupant, a 
trial with any collision with the wheelchair user will be rated as 
a failed trial.  

Two starting locations as shown in Figure 4, easy and 
difficult, were used to evaluate the capability of the system in 
handling difficult tasks. The easy start location had the gripper 
above the table with no occlusion between the gripper and the 
soda can. In the difficult start location, the gripper started under 
the table. In the difficult configuration, the table is a long and 
large occlusion between the gripper and drink, and there is only 
a 3cm gap between the WMRM’s elbow joint and the table. 

Fig. 3. The subtask of pickup (left) and drink (right) 

Fig. 4. Two start locations of the pickup subtask. The higher location (left) 
and the lower location (right) 

B. Parameters for CBiRRT 
The TSR defines the constraints that limit the CBiRRT path 

planning from searching unwanted trajectories or unwanted 
end-effector poses. The Bound Bw in the TSR is defined as (1). 

𝐵! =
𝑥!"# , 𝑥!"# 𝑦!"# , 𝑦!"# 𝑧!"# , 𝑧!"#

𝑦𝑎𝑤!"# , 𝑦𝑎𝑤!"# 𝑝𝑖𝑡𝑐ℎ!"# , 𝑝𝑖𝑡𝑐ℎ!"# 𝑟𝑜𝑙𝑙!"# , 𝑟𝑜𝑙𝑙!"#     (1) 

The min and max indicate the lower and upper boundary of 
the constraint. For example, the Bw = [0,0; 0,0; 0,0; 0,0; 0,0; -
π/2,π/2] indicates that there is no freedom in the xyz direction 
as well as the yaw and pitch angles but the roll angle allows 
rotation from -90 to 90 degrees. Another example of Bw = [-
100,100; -100,100; -100,100; 0,0; 0,0; -π,π] represents that the 
xyz directions and roll angle allow movement but not the yaw 
and pitch angle.  



 

For the subtask of picking up the soda can, we only 
constrained the end-effector. However, for the other subtasks 
of conveying the drink, there was one more constraint applied 
for preventing the drink from spilling. The parameters applied 
are listed in Table 1. We set the time limit for searching end-
effector solutions to 5 seconds and the time for searching the 
entire trajectories to 30 seconds for each subtask. The iterations 
number for smoothing trajectory is 150. 

TABLE I.  TSR PARAMETERS OF THE SUBTASKS 

Subtask Bw Bw Type 

Pickup the drink 

[0,0;0,0;0,0;0,0;0,0; -π/2,π/2]  
if the drink is at the left hand side of 
the iARM gripper 

Goal pose 

[0,0;0,0;0,0;0,0;0,0; π/2,3π/2]  
if the drink is at the right hand side 
of the iARM gripper 

Goal pose 

Bring the drink to 
the user 

[-0.35, -0.4, 1.05] User’s mouth 
[0,0;0,0;0,0;0,0;0,0; -π/2,π/6] Goal pose 
[-100,100;-100,100;-100,100; 
0,0;0,0; -π ,π] 

Constrain 

Place the drink 
on the table 

[0,0;0,0;0,0.1;0,0;0,0;-π/2,π/2] Goal pose 
[-100,100;-100,100;-100,100; 
0,0;0,0; -π ,π] 

Constrain 

C. Evaluation Measures 
The system was tested on three levels: the detection level, 

the planning level, and the whole system level. The detection 
level only evaluates the MOPED in detecting different 
orientations of the soda can. The soda can faces the camera 
with different rotation angles and distances. The planning level 
(shown in Figure 5) evaluates the ability and success rate of the 
CBiRRT with OpenRAVE simulation in searching trajectories 
for each subtask. In this test, the soda can was randomly placed 
in front of the WMRM either inside or outside its working 
space. The whole system level test evaluates the system, 
including moving the iARM to physically picking up the drink 
and bringing it to the user, to see how the planning strategies 
work in the real world. As shown in Figure 4, the soda can was 
randomly put on the table inside the working space and 
recognition area (inside the blue tape). 

Fig. 5. The planning level (right) and system level (left) 

The success rate and completion time are the major 
outcome measures for each subtask. The time of detection is 
determined by the start of the detection state to successfully 
finding the drink. For the path planning level, the success rate 
of planning algorithms and the time needed for planning is 

reported, including the robot simulation. However, we added 
one more condition that if the time of planning and robot 
simulation exceeds 60 seconds, i.e. slower than human 
performance [6], we rate this trajectory as failed. The location 
failures to find trajectories were also recorded. The average 
speed was defined by equation (2). 

 𝑆𝑝𝑒𝑒𝑑 = !!!!! !! !!!!! !! !!!!! !

!
 (2) 

where T is the time from the start of path planning to the 
end of robot movement. xT, yT, zT are the position at the end of 
the trajectory and x0, y0, z0 are the start position. Table II shows 
the outcome measures for each subtask. 

TABLE II.  MEASUREMENTS OF SUBTASKS 

Subtask Measurements 

Detection Successful rate 
Time completion 

Pickup the drink 
Successful rate 
Time completion/Speed 
Fail reasons 

Bring the drink to the user 
Successful rate 
Time completion/Speed 
Fail reasons 

Place the drink on the table 
Successful rate 
Time completion/Speed 
Fail reasons 

V. RESULTS 
The results of completion time, moving speed, and the 

success rate are shown in Table III.  

TABLE III.  TEST RESULTS 

Subtask Outcome measure 
Complet. time 
(second)a Speed (mm/s) #Fail/#Total  

Success Rate 
Planning 
level 
(start 
above 
the table) 

Pickup 
3.62±0.80 
(1.32~7.70) 

134.6±41.4 
(55.4~358.0) 

5/1365 
99.6% 

Drink 2.51±0.99 
(0.86~5.95) 

339.2±121.9 
(141.1~777.8) 

47/1127 
96.17% 

Place 1.83±0.47 
(0.80~4.67) 

436.3±95.2 
(168.5~847.4) 

0/1170 
100% 

Planning 
level 
(start 
under the 
table) 

Pickup 9.50±9.74 
(1.93~58.53) 

79.3±39.1 
(6.4~210.4) 

18/558 
96.8% 

Drink 2.6±0.9 
(1.0~5.4) 

322.6±115.0 
(139.7~730.6) 

37/472 
92.2% 

Place 1.9±0.5 
(0.9~4.6) 

425.9±94.0 
(158.1~782.1) 

0/505 
100% 

System 
level Detect 0.45±0.12 

(0.20~0.68) N/A 100% (0°) 
92% (45°) 

Pickup 12.1±2.6 
(7.6~18.0) 

47.5±5.8 
(26.8~50.7) 

18/62 
70.1% 

Drink 9.58±1.85 
(6.6~15.4) 

74.6±12.3 
(50.3~99.3) 

7/38 
81.6% 

Place 10.6±2.7 
(5.4~17.0) 

75.8±17.4 
(48.1~125.8) 

0/30 
100% 

a. Completion time is presented as average ± standard deviation (minimum ~ maximum) 

A. Detection Performance 
The average time for MOPED detection was 0.45 second 

for a single soda can and 1.75 seconds for multiple objects 
shown in Figure 6. However, the faces with less SIFT features 
were harder to recognize (Shown in Figure 6). Detection 
success rates were 100% at 0 degrees, 92% at 45 degrees, and 



 

 

 

unable to identify at 90 degrees. Moreover, the MOPED 
distance estimation was 1 inch shorter when the soda can was 
more than 28 inches away.  

Fig. 6. Different faces and poses of soda recognized by MOPED 

Fig. 7. Success and fail location on the table (upper left: Pickup subtask from 
higher start location, upper right: Drinking subtask from higher start location, 
lower left: Pickup subtask from lower start location, lower right: Drinking 
subtask from lower start location) 

B. Movement Performance 
Overall, the path planning simulations show a very high 

success rate (> 92%). The pickup subtask is relatively slower 
than the drink and place subtasks. Planning from the easy 
location was faster than from the difficult position. Figure 7 
plots the locations on the table that have been tested for pick-
up and drinking subtasks. The red triangles indicate the 
location from which the iARM was unable to complete the 
subtask. The iARM and electrical power wheelchair (EPW) is 
drawn on the side of the table. In the pick-up subtask, starts 
from under the table show more random failures than starts 
from above the table. More failures were located on the left 
side of the iARM. The failures on the right side of the iARM 
were close to the limit of the workspace. In the drinking 
subtask, most of the failures were found at the edge of the 
iARM workspace. There were no failures found on the right 
side of the iARM.  

In the system test, the overall success rate was 70.1% for 
the pick-up subtask and 81.6% for the drinking subtask. The 
speed of the pick-up subtask was slower than the simulation. 
The completion time of the WMRM in the subtasks was longer 
than the simulation (Table III). The entire drinking task was 
completed within 40 seconds. The successful and failed 
locations on the table of four subtasks are plotted in Figure 8. 

Fig. 8. The successful and failed locations on the table of four subtasks in the 
system level test. Gray: success detection; Blue: successful pickup; Orange: 
failed pickup; Green: successful drink; Red: failed drink; Brown: place 
locations. 

VI. DISCUSSION 

A. Detection 
The MOPED relies on the SIFT features for establishing 

object pose hypotheses. The object with fewer SIFT features 
has less chance of being recognized. The other limitation was 
the calibration of the camera. Although the camera was 
calibrated before tests to eliminate distortion and skew factors 
form the lens, the error in the camera internal parameters may 
be amplified if the object was away from the camera. 
Therefore, at the edge of the workspace, the estimated distance 
error is about 1 inch.  

B. Movement 
The planning simulations demonstrated a very high success 

rate at the easy and difficult start locations. Most of the 



planning failures occurred at the edge of the workspace. This 
was probably because of the singularity point in the kinematic 
model when the robot is fully extended. For the subtask of 
picking up and bringing the drink to the user from the difficult 
location, the robot failed more often on its left hand side (0.2m 
away from robot base). This is similar to a human’s arm, in 
that it is harder for a human to bring an object far away from 
the body. The robot had no problems in picking up and 
bringing to the user when the soda can was in front of the 
wheelchair and about 0.3m from the edge of the table.  

In the system level test, the major cause that the pick-up 
failed was when the MOPED positioning error was located at 
the far end away from the camera. The failures were likely 
caused by the aggressive trajectories. These kinds of 
trajectories include some motions with either 0.5” tolerance to 
the objects or arm extended more necessary. The drinking 
subtasks usually failed with unsafe grasping that dropped the 
object during motion. These failed moves can be improved 
with better trajectory strategies. Although the speed was slower 
than the simulation, it can be increased by re-sampling the 
trajectory to fewer waypoints so that the WMRM has fewer 
stops during the movement.  

VII. CONCLUSION 
A novel WMRM system with autonomous functions was 

developed. This system was evaluated with a drinking task that 
included carrying and handling the drink. The drinking task 
was divided into four subtasks: detection, picking up the drink, 
bringing the drink to the user, and placing the drink on the 
table. Success rates and the average task completion time for 
each subtask were computed. The entire drinking task was 
completed within 40 seconds. 

Future work includes error correction implementation of 
object recognition to reduce the distance error, path planning 
strategies to reduce failures in performing on the WMRM, and 
optimization of the trajectory waypoints to maximize the speed 
of the WMRM. Other work will include a user interface for 
picking up object autonomously and combination with local 
user interface for cooperative mode control. 
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