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Abstract—Robots as rehabilitative devices are increasingly
utilised in research in this area given their capability to offer
repetitive task-oriented training and potentials to augment
therapies with more interactive mediums. Various parameters
recorded by these rehabilitation robotic devices could inform the
therapists about the recovery and thereby allow them to tailor
the training according to the performance of the patient. The
GENTLE/A rehabilitation system uses the parameters recorded
by the HapticMaster robot to identify the leading/lagging
performance of the user interacting with the system. Using
these performance indicators we proposed a performance based
training algorithm that was evaluated during this pilot study
with healthy participants. The algorithm could successfully
adapt the task difficulty level by altering the resistance offered
to the movement of the user. This performance based training
algorithm could be enhanced in future to offer isokinetic
training. Isokinetic training can identify weak muscle groups
and help the therapists recommend a rehabilitation programme
for targeted muscle-groups.

Keywords- Stroke rehabilitation, upper-extremity, adaptive,
performance-based training

I. INTRODUCTION

Research on global burden of disease [1] shows that Cere-
brovascular accident (stroke) is one of the leading contributors
for burden of disease in high and middle-income countries.
Statistics project that stroke would continue to remain the
second major cause of death in the world by 2030 [2]. Given
these statistics and with increasing demand for rehabilitation,
the need for advanced devices that can assist the therapists to
offer rehabilitation has greatly increased. The primary demand
from such rehabilitative devices is to reduce the therapist
monitoring time and make the rehabilitative training partly
self-manageable. This is also thought to encourage the patients
to feel in control of their training and motivate them to train for
longer durations. In post-stroke recovery early interventions
during sub-acute and acute phases for durations suitable to
patient’s condition and repetitive training are believed to be

more effective [3], [4]. Robotic rehabilitation devices are
capable of offering these features and in addition could also
record several patient parameters that can inform the therapist
about the progress in the recovery. The GENTLE/A system
is one such device that can offer rehabilitation to upper-limb
impaired stroke patients.

If the rehabilitative training has to be made self-manageable
(at least partly), the robotic device should autonomously
adapt to the performance of the user. The main goal of
our research with the GENTLE/A system is therefore to
enhance the adaptability of the rehabilitation system. In order
to achieve this the strategy we followed is to (i) identify the
parameters that inform about the role of the user/robot during
an interaction and (ii) use these parameters as performance
indicators to adapt the system. The HapticMaster (HM) [5], the
robotic component of the GENTLE/A system, is programmed
to follow a reference trajectory (Minimum Jerk Trajectory,
(MJT) [6]). HM’s end-effector can record position, force and
velocity. In our earlier studies [7], [8] with the GENTLE/A
system we identified that the difference between the Cartesian
coordinates recorded by the HM and the MJT position at a
given point in time indicated the leading/lagging status of the
user with respect to the robot. This parameter that estimated
the contribution of a user during a human-robot interaction
(HRI) session was termed as ∆Effort.

The whole process of rehabilitation is to retrain and relearn
lost motor skills. A rehabilitative training is thought to be
useful if it can motivate the patients to train more at the initial
stages of recovery and make the task progressively challenging
as the recovery happens. So applying this to our research,
once the ∆Effort parameter identifies that the user is leading
the interaction, the task could be made more and more chal-
lenging. Using ∆Effort and parameters derived from ∆Effort
(presented in later sections of this article), we proposed a
performance based training algorithm. This algorithm would
adapt the task difficulty based on the performance of the user
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interacting with the GENTLE/A system. This algorithm has
been evaluated during the current pilot study and the results
are presented in this paper.

II. METHODS

A. Experimental setup

The HapticMaster (HM) has 3 degrees of freedom with
reasonably larger workspace, suitable to offer training for
upper-extremity impairments. A Virtual Reality (VR) envi-
ronment displayed the target points to be reached by the
user as coloured balls (Fig.1). An embedded set-up (Fig. 2)
was created to test the performance of the users in the pres-
ence/absence of real objects alongside virtual objects displayed
on the screen.

The participants were asked to hold the ball gimbal (black
ball in Fig. 2) attached to the HM’s end effector and move
from point-to-point in a sequence. The VR environment and
audio cues helped the participant to figure out source and target
points. The movement beginning at point-k to reach point-
(k+1) was referred as segment-k and a set of eight points was
chosen for this study.

Fig. 1. VR environment showing virtual targets

B. Terminology and Parameters

Our previous studies with the GENTLE/A rehabilitation
system informed us that during a HRI session, the Cartesian
coordinates recorded from the HM’s end-effector could indi-
cate the leading/lagging status of the user. The HM could be
programmed to operate in different modes with varying roles
of the user versus the HM. The two modes in which the HM
was operated during this pilot study were
1. Passive: User remained passive while the HM executed
point-to-point movements according to a reference trajectory
(MJT).
2. Active: User actively executed the point-to-point movements
while the main role of the HM was to record the data and offer
corrective haptic assistance when the user deviated beyond a
set limit from the reference path.

Fig. 2. Embedded environment showing both real and virtual targets

During the execution of any segment (point-to-point move-
ment), data was sampled at 50 msec time intervals. The Carte-
sian coordinates were recorded at every sampling interval and
various parameters were calculated to indicate the performance
of the user (see Fig. 3 for a pictorial representation).
Guiding vector: Straight line vector joining source and target
points of a segment.
Actual vector: Vector joining source to the current position
achieved by the user at the given point in time.
MJT vector: Vector joining source to the MJT position at the
given point in time.
EffortActual: Vector projection of ’Actual vector’ onto the
’Guiding vector’.
EffortMJT : Vector projection of ’MJT vector’ onto the ’Guid-
ing vector’.
∆Effort: Performance indicator that could successfully indi-
cate the leading/lagging performance of the users in earlier
studies with the GENTLE/A system.

∆Effort = EffortActual−EffortMJT

%Contribution: Indicates leading/lagging performance of the
user with respect to the reference trajectory (MJT) as a
percentage.

%Contribution = ∆Effort
EffortMJT

* 100
%Difficulty(LOW): The difficulty levels during a segment were
altered between high and low based on the algorithm presented
in the next sub-section. %Difficulty(LOW) was calculated as a
percentage of the number of samples for which the difficulty
level remained low to the total number of samples collected
during that segment.

%Difficulty(LOW) = Sample CountLOW

Total Sample CountSegment
* 100

%Difficulty(HIGH) was similarly calculated from number of
samples for which the task difficulty level remained high
during a segment.



Fig. 3. Vector representation

C. Algorithm

Our research with the GENTLE/A rehabilitation system
aims to enhance the adaptability of the system according to the
performance of the user. ∆Effort could successfully indicate
the leading-lagging status of the user in our earlier studies with
the GENTLE/A system. Utilising the %Contribution, derived
from ∆Effort, as a performance indicator we proposed an
adaptive algorithm that would autonomously alter the task
difficulty. The algorithm is implemented during the ’active’
mode of operation. The choice of the mode was to enable
testing the adaptability algorithm when the user was actively
contributing to the movement. The active mode uses a ratchet
function (E(t)) [9], that allows the movement to progress
towards the target only when the user actively contributes and
leads the activity.

E(t) = (p(t)-p’(t))2

where p’(t) is the actual position of the robot and p(t) is
the position the robot has to be according to the reference
trajectory (MJT) at the time t. Thus for each two adjacent
time samples such as t1 and t2 where t2 > t1 we can calculate
E(t1) and E(t2). If E(t2) < E(t1) then t1 is adjusted to be
the new value t2. Hence in the active mode ∆Effort, always
shows a leading contribution from the user. The parameter
%Contribution therefore gives the amount (in percentage) by
which the user is leading the MJT. We designed our algorithm
based on the ’personalised training module’ implemented on
a rehabilitation gaming system and tested with upper-limb
impaired stroke sufferers [10]. The algorithm is presented as
a flow-chart (Fig. 4). As a virtual spring-damper combination
was used to guide the movement in line with the reference
trajectory, to change the task difficulty we altered the stiffness
of the virtual spring created at the HM’s end-effector. At the
beginning of every segment, the task difficulty was set to a
default value (default spring stiffness =300 N/m). After every
10 samples (=0.5s), the %Contribution was calculated and the

Default
difficulty level

Set task
difficulty

Progress
towards target

10 sampling
intervals

Performance
assessment

%Contribution

Performance
> 70%

Performance
< 50%

Decrease
task difficulty

Increase
task difficulty

no

yes

yes

no

Fig. 4. Flow-chart representation of Performance based training algorithm

task difficulty was changed according to teh algorithm. The
difficulty level was raised by increasing the spring stiffness by
50% (high spring stiffness = 450 N/m) which in turn increased
the resistance offered by the HM to the user’s movement.
Similarly, the difficulty level was lowered by decreasing the
spring stiffness by 25% (low spring stiffness =225 N/m).
Therefore the spring stiffness varied between the default,
higher and lower values during the execution of a segment
based on the performance of the user. These assignments were
set after a series of trial and error experiments assessing how
the system felt with stronger and weaker springs but further
work in this area will consider auto-adjustment of stiffness
proportionate to %Contribution.

D. Protocol

The pilot study included eleven healthy participants (2
female and 9 male), age ranging 26.9 ± 6.6 (mean ± standard
deviation). Written informed consent was obtained from each
participant before inclusion in the study and ethical approval
of the evaluation protocol was obtained from the University’s
ethics committee (under University of Hertfordshire approval
number 1213/28).

During an experimental session, participants were briefed
about both the modes and asked to practice these modes
to understand how the movement progressed in a sequence
from Point-1 to Point-8 with a small delay of 1s between
consecutive segments. This initial training helped the par-
ticipants to understand their role during each mode. In the
passive mode the participants were advised to remain passive,
gently holding the ball gimbal allowing the HM to execute the
activity. While in the active mode, participants were instructed
to take charge of the activity. The screen displaying the VR
was made invisible to the participant by covering it with an



opaque board during the active mode. The intention of this
act was to encourage the participants to notice the real objects
representing the targets and pay attention to the audio cues.

Once the participant was comfortable with the system, the
active mode was executed five times. Both virtual and real
targets were visible during these five iterations and the choice
of using either as a reference for practice was left to the
participant. During these iterations the system autonomously
tuned the difficulty of the task according to the algorithm
presented in (Fig. 4). Towards the end of the fifth iteration
the participant was given a small questionnaire to complete.

III. RESULTS AND ANALYSIS

The main aim of this pilot study was to evaluate the
performance of the adaptive algorithm. We carried out this
evaluation using two sources of data obtained during the
study, one being the data recorded by the system and the
other being the feedback obtained through questionnaires. As
a first step the data recorded by the system during the five
repetitions of the active mode was analysed to study if the
algorithm implemented, autonomously tuned the resistance
based on the performance of the participant. The performance
of the participant was assessed every 10 sampling intervals
(=0.5s) and the task difficulty was altered accordingly by the
algorithm.

Fig. 5. Performance of Participant 1

Every segment was executed five times by each participant
during the five repetitions of active mode. The number of
sampling intervals for which the task difficulty remained low
(low spring stiffness) was counted and from this %Diffi-
culty(LOW) was calculated for each segment during an iter-
ation. Similarly, %Difficulty(HIGH) was calculated from the
number of sampling intervals at high task difficulty level (high
spring stiffness) for that segment. Fig. 5 - Fig. 7 illustrate
the performance in terms of %Difficulty(LOW) during all the
five iterations of the active mode for three of the participants
from the study. The plots show that the task difficulties, not

Fig. 6. Performance of Participant 6

Fig. 7. Performance of Participant 8

only varied from participant to participant but also between
different segments executed by the same participant as well as
within iterations of the same segment.

We used simple rules presented in Table I to study these
plots. Applying these rules to segment-5 of Fig. 5, it can be
inferred that during second and third iterations the participant
executed major part of the segment at low task difficulty level.
Likewise varying patterns in the performances of Participant
6 and Participant 8 could be observed from Fig. 6 and Fig.
7 respectively. The performance of the system as projected
by the data recorded by the HM is highlighted through these
plots.

The next step of data analysis was to evaluate the perfor-
mance of the system as perceived by the participants. The
summary of the feedback received through questionnaires is
presented in Table II. When the participants were asked to rate
the challenge in the task, 5/11 participants rated the challenge



TABLE I
PERFORMANCE EVALUATION RULES

%Difficulty(LOW) Performance evaluation

> 50 major part of the segment executed at LOW task
difficulty level

<= 50 major part of the segment executed at HIGH task
difficulty level

TABLE II
QUESTIONNAIRE SUMMARY

Participant Challengea Differenceb Usefulness of
embedded objectc

1 2 Yes 3
2 4 No 5
3 3 Yes 4
4 3 No 4
5 5 Yes 5
6 2 No 4
7 3 Yes 5
8 4 Yes 5
9 4 No 4
10 1 No 4
11 4 Yes 5

aon a 5-point Likert Scale 1-Not at all challenging and 5-Very challenging
bdifference in the task difficulty level perceived by the participant as the
movement progressed from source to target of a segment
con a 5-point Likert Scale 1-Not at all useful and 5-Very useful

as ’somewhat challenging’ or ’very challenging’, 3/11 rated the
challenge as ’neutral and 3/11 rated as ’not very challenging’
or ’not at all challenging’. For the difference perceived as the
movement began at a source point and progresses towards a
target point of a segment, 6/11 participants responded with
an ’Yes’. The comments received when the participants were
asked to explain the difference were like ’more difficult’, ’had
to put more effort’, ’I felt the resistive forces increased, so
had to put extra effort’ and so on. These comments from the
participants suggested that the system indeed tuned the task
difficulty according to the performance of the participant. We
attempted to examine if there existed any patterns between the
performance of the system as perceived by the user and the
performance of the system as projected by the system recorded
data.

Assumption: Our underlying assumption while carrying on
this examination was, if the performance of a participant
is spread out between high and low task difficulty levels
during the entire experimental session, this would prompt the
participant to perceive the difference in system’s response to
his/her inputs. Likewise if the performance is confined mostly
to one of the task difficulty levels, there is a greater chance
that the variation between the task difficulty levels would go
unnoticed by the participant.

In order to estimate the performance of the participant
during the active mode we calculated the sum of %Diffi-
culty(LOW) across the five iterations of each segment and
extended the rules presented in Table I to ’> 250’ and

’<= 250’ for low and high task difficulty levels respectively.
Fig. 8 presents a segment-wise summary of the performance
of all the participants in the study. The plot also groups
the participants according to their response (Yes/No) for the
question ’difference perceived in the task difficulty level’.
The left half of the plot shows the system performance for
participants with the questionnaire response ’Yes’ and the right
half shows the system performance for the participants with
the questionnaire response ’No’. For participants 1, 3 and 11
the performance was spread out between high and low task
difficulty levels (see Fig. 8 above and below %Difficulty(LOW)
=250) and the perceived a difference in the system’s response.
(questionnaire response ’Yes’) and this was in agreement with
our assumption. Similarly, for participants 2, 4, 6, 9 and 11
the performance was confined to low task difficulty level (see
Fig. 8 above %Difficulty(LOW) =250) and the participants
could not perceive a difference in the system’s response
(questionnaire response ’No’) and this was also according
to our assumption. But the performance and questionnaire
responses of participants 5, 7 and 8 were not according to our
assumption. In summary, for 8/11 participants the system’s
response and the participant’s observation matched.

Fig. 8. Performance summary plot of all the participants

An earlier study [11] conducted by our research team
showed that the performance of healthy participants signif-
icantly differed between completely virtual and embedded
environments. Since patients with stroke often suffer from
cognitive impairments, this might effect their performance in
a VR environment. This we believe could be avoided if a
real object is presented as a target and might also bridge
the gap between the training and the real life scenarios. We
therefore included an embedded set-up alongside the VR in
this pilot study (see Fig. 2) to investigate further. The feedback
received for ’usefulness of the embedded object’ through the
questionnaire supports our previous findings. 5/11 participants
responded with ’Very useful’ for the embedded environment,



4/11 with ’somewhat useful’ and 1/11 was ’neutral’.

IV. DISCUSSION AND CONCLUSION

The main goal of this pilot study was to evaluate the
performance-based adaptive training algorithm implemented
on the GENTLE/A rehabilitation system. The system recorded
data from the study showed that the training algorithm did
indeed tune the task difficulty based on the performance of
the participant. Comparing questionnaire with system recorded
performance parameters, a greater share of responses received
through the questionnaire also confirmed the difference in the
task difficulty level as perceived by the participants.

However, while we highlighted our assumption, that a
spread out of the performance between low and high task
difficulty levels could inform on participants perception of
a difference in system’s response, this was indeed not the
case for participants 5, 7 and 8. A potential explanation for
this observed difference could be that high and low task
difficulty levels in our data analysis follows an assignment
of stiffness values to low and high categories. This is while
individual’s perception of task difficulty does not necessar-
ily relate to such assignment. Therefore we point out that
results obtained regarding perceived level of difficulty using
questionnaires might not be suited for alignment with the
%Difficulty(LOW)/(HIGH) calculations. However, we maintain
that %Difficulty(LOW)/(HIGH) can provide a good insight
into dynamic change of difficulty during different interactive
sessions. Using %Difficulty(LOW)/(HIGH), it was noted that
the adaptive tuning did indeed work for all participants as
reflected by changes in difficulty levels for different segments.
We intend to also use recorded forces during additional analyt-
ical work to identify if changes in difficulty levels are in line
with changes in forces recorded, thus highlighting if disparity
in perception in relation to %Difficulty(LOW)/(HIGH), would
also be the case for the recorded forces during interaction. In
our upcoming study, we aim to enhance the adaptive algorithm
to identify participant-specific optimal values for low and high
stiffness and evaluate this enhanced algorithm with a greater
number of participants.

The embedded environment was rated as very useful by the
majority of the participants. Training in an embedded envi-
ronment with real objects as targets as opposed to complete
virtual environment, we presume, would not only improve
the performance of the stroke sufferers but also motivate
them to transfer the skills to activities of daily living. This
deserves further inspection in clinical settings with stroke
sufferers. The performance based adaptive training algorithm
implemented on the GENTLE/A rehabilitation system alters
the task difficulty by altering the resistance offered by the
system. In future we aim to use this variable resistance training
to design isokinetic training exercises. Isokinetic training, apart
from helping the patient to improve muscular strength and
endurance, also helps the therapists to identify weak muscle
groups and thereby tailor the rehabilitation programme.
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