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Abstract—Motor skill learning has different components.
When we acquire a new motor skill we have both to learn a
reliable action-value map to select a highly rewarded action (task
model) and to develop an internal representation of the novel
dynamics of the task environment, in order to execute properly
the action previously selected (internal model).
Here we focus on a ‘pure’ motor skill learning task, in which
adaptation to a novel dynamical environment is negligible and
the problem is reduced to the acquisition of an action-value map,
only based on knowledge of results. Subjects performed point-to-
point movement, in which start and target positions were fixed
and visible, but the score provided at the end of the movement
depended on the distance of the trajectory from a hidden via-
point. Subjects did not have clues on the correct movement other
than the score value. The task is highly redundant, as infinite
trajectories are compatible with the maximum score. Our aim
was to capture the strategies subjects use in the exploration of
the task space and in the exploitation of the task redundancy
during learning.
The main findings were that (i) subjects did not converge to a
unique solution; rather, their final trajectories are determined by
subject-specific history of exploration. (ii) with learning, subjects
reduced the trajectory’s overall variability, but the point of
minimum variability gradually shifted toward the portion of the
trajectory closer to the hidden via-point.

I. INTRODUCTION

Neuromotor recovery shares several features in common
to motor skill learning [1], [8]. Therefore, understanding the
mechanisms underlying the acquisition of a novel skill may
help to derive more principled approaches to technology-
assisted neuromotor rehabilitation.

The acquisition of a novel skill requires repetitive task
performance. Motor skill learning has different components,
each with their own peculiar mechanisms of action. Adaptation
to a novel environment - an unfamiliar dynamics or a distorted
geometry - is believed to require the development of an
internal representation (internal model) of such dynamics or
distorted geometry [7], [15], [19], which allows the motor
system to predict its motor consequences. The development
of an internal model is believed to be driven by the prediction
error, i.e. the discrepancy between the actual and the predicted
disturbance[16]. Tool use is another example of adaptation to
a novel environment, in which an internal model of the tool
has to be developed; see, for instance [4].

A task is usually described in terms of its degree of
successful completion, which can be expressed as a ’score’
or ’reward’ signal - either explicit or implicit. Developing
a ’task model’, i.e. a mapping between a movement and its

value (reward, or score) in the context of that particular task,
is another component of motor skill learning. With respect
to adaptation, the computational mechanisms underlying this
aspect of motor learning have received less attention. Com-
putational models of motor skill learning are frequently based
on reinforcement learning, in which the objective is to find the
optimal policy that selects actions so as to maximize reward
probability. The reward prediction error, i.e. the discrepancy
between the actual and the predicted reward is one likely
candidate driving mechanism; see [6]. In many tasks, two
components: (i) developing an internal model of dynamics and
(ii) developing an internal representation of the action-value
map, are tightly coupled and are difficult to dissociate [5].
Moreover, in most tasks the knowledge about the outcome of
the movement is not limited to the score value. For instance,
in obstacle avoidance tasks subjects not only get a score, but
they also see how far they got from the obstacle [14]. This
additional information on performance likely plays a role in
learning the skill, which makes this component of skill learning
more difficult to study experimentally.

Task redundancy - different movements are equivalent
in terms of their goal - is another crucial aspect of motor
skill learning and neuromotor rehabilitation. After an injury,
impaired individual exploit their movement redundancy to
find new ways to perform everyday life activities. Therefore,
to investigate tasks with redundant solutions is relevant to
understand how the brain deals with the redundancy problem.
The way redundancy is exploited may provide information
about how an internal model of the task is established - the
structure of the ‘task model’. This can be captured by looking
at the pattern of inter-trial variability. Task-relevant features of
the movement are expected to exhibit less variability than task-
irrelevant ones [12], [9]. A related aspect is that movements
equivalent in terms of their associated score may differ in terms
of their associated mechanical effort [18].

Here we focus on the ‘task model’ component of motor
learning, by studying a motor learning task in which the role
of adaptation is negligible and in which a score, visualized
at the end of the movement, is the sole information available
on task performance. If subjects don’t have clues on task
solution other than the score value, their only option will
be to explore the space of possible movements in search of
high-score regions. Moreover, if the task is redundant, they
will need to choose among infinite movement trajectories
that are equivalent in terms of task requirements. We will
specifically look at how subjects exploit task redundancy to
develop an optimal solution for this task.
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II. MATERIALS AND METHODS

A. Subjects

Six healthy right-handed subjects (4 male - 2 female, age
29 ± 3 years) participated in the experiment. The research
conforms to the ethical standards laid down in the 1964 Decla-
ration of Helsinki that protects research subjects. Each subject
signed a consent form that conforms to these guidelines.

B. Experimental apparatus and Task

Subjects sat in front of a computer screen and grasped the
handle of the planar robot manipulandum Braccio di Ferro
(BdF) (Celin srl, La Spezia, Italy); see [2] for details. The
robot did not generate forces. We only used its optical encoders
to record the end effector position during the movements.
Subjects had to perform point-to-point movements between
two fixed locations, from a starting point (white circle, �3 cm)
to a target point (yellow circle, �3 cm), both displayed on the
computer screen at a horizontal distance of 20 cm; see Figure
1. The current position of the end effector was continuously
displayed as a red cursor (�1 cm); the ongoing trajectory of
the end effector was also displayed as a red trace. At the end
of the movement, a numeric score (0-100) was displayed on
the screen. In addition, a text message warned the subjects if
the movement was either too slow (speed < 1 m/s) or too fast
(speed > 1.2 m/s). However, subjects were not penalized if
the movement speed was not in the suggested range. Subjects
were told that their goal was to vary the shape of the movement
trajectory in order to achieve the maximum score. They were
also told that the score was related to trajectory shape, not to
its duration. The score was calculated in terms of the minimum
distance d of the movement trajectory from a (hidden) point,

Fig. 1. Experimental apparatus and task. Participants start moving from the
starting position toward the target. At the end of the movement a score is
displayed, which reflects the distance of the trajectory from a (hidden) via-
point

5 cm

Fig. 2. Movement trajectories in the early, middle and late phases of the
experiment for two typical subjects, S4 and S6. The red dot denotes the
(hidden) via-point

placed at a fixed location (see Figure 1). If d ≤ 1 cm, the score
was set to 100. For d > 1 cm, the score decreased according to
a Gaussian profile, whose standard deviation was calculated so
that the score was 0 for d ≥ 4 cm. The task is highly redundant
(any trajectory that passes through the via-point gets the same
score) and the only information provided to subjects is the
score value at the end of each movement.

C. Experimental Protocol

The experiment consisted of 150 movements, splitted into 3
epochs (50 movements each). A pause of 60 sec was scheduled
among the epochs.

D. Data Analysis

Hand trajectories were sampled at 60 Hz and stored for
subsequent data analysis. The recorded trajectories and all the
relevant derivatives were smoothed by means of a 6th order
Savitzky-Golay filter with a 170 ms time window (cut-off
frequency: 7.5 Hz).

1) Learning and exploration: As performance indicator
we took the reward signal (score). We also looked at what
movement subjects converged to, and how did they get there,
i.e. how they explored the space of possible movements. To
do so, we looked at inter-trial movement variability (similarity
from two consecutive trajectories). We specifically focused on
two similarity measures: figural distance and the correlation of
the speed profiles. While the first indicator provides informa-
tion related to the spatial component of the trajectories, speed
profile correlation also accounts for the time component.



a) Figural Distance: Given two trajectories A and B
(consisting respectively of nA and nB points each), assuming
that dAB(i) = minj ‖−→x A(i)−−→x B(j)‖ is a vector containing
the distances between the trajectory B and each point in A,
whereas the vector dBA(i) contains the distances between the
trajectory A and each point in B, the figural distance (FD)
between A and B is defined [3] as:

FDAB =
1

nA + nB

[
nA∑
i=1

dAB(i) +

nB∑
i=1

dBA(i)

]
(1)

FD measures differences in shape, irrespective of the differ-
ences in speed. We calculated the FD between each subsequent
pair of trajectories.

b) Speed Profile Correlation: Given the speed profiles
of trajectories A and B, vA(i) and vB(i), the correlation
between A and B is defined as:

CAB =
maxτ [cAB(τ)]√
cAA(0) · cBB(0)

(2)

where cAB(τ) = 1
n

∑n
i=1 [(vA(i)− vA) · (vB(i+ τ)− vB)]

with n = min(nA, nB) is the cross-covariance of the two
speed profiles.
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Fig. 3. Trial by trial evolution of score (top), and trial-by-trial similarity,
measured in terms of figural distance (middle) and speed correlation (bottom),
for subjects S4 and S6

Fig. 4. Trial by trial evolution of score (top), and trial-by-trial similarity,
measured in terms of figural distance (middle) and speed correlation (bottom).
The line represents the average of all subjects, the dashed area the SE

2) Spatial variability: A look at movement variability may
also shed some light on how redundancy is exploited. If
subjects learn optimal trajectories, they may keep exploring the
high-score portion of the solution space to find less effortful
solutions. Alternatively, they may keep the first solution that
they get into, and no further optimization occurs. To understand
what parts of the trajectory are, respectively, more and less
variable, for each group of 25 consecutive movements we
calculated a spatial variability index; see also [14]. First, we
calculated the mean spatial path, by resampling each path in a
fixed number of equidistant samples (100) and averaging each
trial to compute the mean spatial path. Then, for each location
along the path (in 10% increments), the spatial variability was
computed as follows: (i) We calculated the normal direction
with respect to the mean tangential velocity; (ii) For each in-
dividual trajectory, we selected the data points that intersected
the normal direction, and (ii) we took the standard deviation of
these points with respect to the average trajectory as a measure
of spatial variability for that portion of the trajectory.

III. RESULTS

Figure 2 depicts the temporal evolution of the movement
trajectories during the early (1 − 25 trials), middle (51 − 75



trials) and late (125 − 150 trials) phases of the experiment,
for two different subjects. Subjects initially attempted different
movements, until they hit a non-zero score region. As soon as
subjects got a non-zero score, they narrow down the explo-
ration. At the beginning of the middle phase, the trajectory
has almost stabilized.
A closer look at the temporal evolution of score and trial-
by-trial variability - see Figure 3 - suggests that subjects do
not completely give up exploration after the early phase of
learning, as shown by the occasional increases of the figural
distance and/or the decreases in the speed correlation. The
limited degree of co-variation between figural distance and
speed correlation suggests that exploration may involve the
spatial, the temporal aspects of the movement, or both. On
average over all subjects, these same quantities suggest that
exploration continues to the very end of the trial (non-zero
figural distance and speed correlation less than one). Other
factors - for instance, fatigue and loss of attention/motivation
in the later phases of the experiment - may also play a role;
see Figure 4.

At the end of the experiment, all subjects converged to
a relatively stable, consistent trajectory. However, the learned
trajectory was not the same for all subjects. Figure 5 depicts the
last ten movement trajectories made by each subject - which
can be interpreted as the movements ’learned’ by that subject -
together with their respective speed profiles. After completion
of the experiment, all subjects were questioned about the
strategy they had developed. In general, the explanations were
rather vague. The majority reported that they targeted regions
of the space that they had identified as associated with an
high score. One subject suggested he was aiming at a specific,
high-score spatial path; no one guessed that the score was
determined by the distance from a single via-point. Figure
5 suggests that the final trajectories are not the same for all
subjects, and are determined by the (subject-specific) history
of exploration.

Another important information is provided by the spatial
variability observed along the average path. In point-to-point
movements with a via-point, the optimal feedback control
hypothesis of motor control [18] predicts that when crossing
the via-point, the optimal trajectory exhibits a minimum of
spatial variability.

A look at the evolution of spatial variability in the trajectories
learned by different subjects, see Figure 6, suggests that
subjects do not generally converge to the optimal control
solution. The variability decreases across trials in all points
of the trajectory, but the lowest variability, and hence the
greatest repeatability, is always observed in the first half of the
trajectory. In some subjects the point of minimum variability
gradually gets closer to the point at minimum distance from
the hidden via-point. This would have been consistent with the
optimal control hypothesis, but is not true for all subjects.
Finally, the point of maximum curvature does not exhibit a
consistent relation with the via-point. In the Figure 2, in the
two subjects the maximum curvature is found, respectively,
before (subject S4) or after (subject S6) the via-point.

IV. DISCUSSION

We have investigated a ‘pure’ motor skill learning task
in which a complex trajectory has to be learned solely on
the basis of knowledge of results (a numeric score). The
task is inherently redundant as infinite trajectories are task-
equivalent i.e. they give the same score. The issue is relevant
to neuromotor rehabilitation because, when trying to recover a
functional behavior, stroke survivors need to explore the space
of their residual movements and to exploit redundancy for
identifying movements that are more efficient in terms of the
associated effort. In this process, knowledge of results is often
the only available information.

A. Is there a unique ’optimal’ solution?

Our results clearly demonstrate that each subject converged
to a different solution. An optimal control formulation of this
problem - based on a complete knowledge of the task (position
of the via-point) - predicts that the ‘optimal’ trajectory in terms
of minimization of variability and effort would correspond to
matching the hidden via-point with the point of minimum
path variability. In contrast, our subjects do not converge to
a solution in which these two points are coincident. Possible
interpretations are that either (i) subjects don’t use optimal-
ity principles to select their movement, or (ii) the observed
trajectory is still optimal when lack of knowledge of via-
point position is accounted for. This is a matter of future
investigation.
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Fig. 5. Movements (top) and speed profiles (bottom) learned (last 10 movement trajectories) by each individual subject. From left to right: subjects S1-S6
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Fig. 6. Evolution of movement variability throughout the course of the
learning epochs, for subjects S4 and S6, calculated at different fractions of
the total path length. The red dashed line denotes the the point of minimum
distance from the hidden via-point. The black dashed line represents the
point of minimum path variability. Blue dots indicate the point of maximum
curvature

B. Task-relevant vs task-irrelevant variability

Many studies - e.g. [10], [11], [13] - have shown that
motor skill learning is characterized by a decreased variability
in the task-relevant components of the movement. Similar to
[14], [17], here we found that spatial variability decreases with
training over the whole movement path; see Figure 6. However,
a greater decrease is observed in the portions of the path that
are closer to the hidden via-point. A look at the pattern of
spatial variability along the movement path suggests that there
is a point in which variability reaches a minimum - the black
dots in Figure 6). Moreover, this point gradually converges
to the portion of the path that has minimum distance to the
hidden via-point - the red line in Figure 6. This suggests that
subject gradually incorporate the (hidden) structure of the task

in their ‘task model’.
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