
Non-Contact Capacitance Sensing for Continuous
Locomotion Mode Recognition: Design

Specifications and Experiments with An Amputee
Enhao Zheng†, Long Wang†, Yimin Luo§, Kunlin Wei‡, and Qining Wang†,∗

†Intelligent Control Laboratory, College of Engineering, Peking University, Beijing 100871, China
‡Department of Psychology, Peking University, Beijing 100871, China

§National Research Center for Rehabilitation Technical Aids, Beijing 100721, China
∗Email: qiningwang@pku.edu.cn

Abstract—Locomotion mode recognition plays an important
role in the control of powered lower-limb prostheses. In this
paper, we present a non-contact capacitance sensing system (C-
Sens) to measure the interfacial signals between the residual limb
and the prosthetic socket. The system includes sensing front-ends,
a sensing circuit, a control circuit and foot pressure insoles.
In the proposed system, the electrodes are fixed on the inner
surface of the socket, which couple with the human body forming
capacitors. The foot pressure insoles are built for detecting
gait phases. The data sequence is controlled by the control
circuit. To evaluate the capacitance sensing system, experiments
with a transtibial amputee are carried out and seven kinds
of locomotion modes are recorded. With the continuous phase
dependent classification method and the quadratic discriminant
analysis (QDA) classifier, the average recognition accuracies are
93.8% and 95.0% for the stance phase and the swing phase
respectively. The results show the potential of the proposed system
for the control of powered lower-limb prostheses.

I. INTRODUCTION

Prostheses have a profound impact on the daily life of
amputees. The development of powered lower-limb prostheses
can extend the functions that a prosthesis can perform [1]–[8].
The control strategies of powered prostheses are determined
only with current motion mode known. Thus, automatic recog-
nition of locomotion modes is necessary for controlling the
powered prosthesis.

Previous studies presented various strategies for recognizing
locomotion modes. Several neural-machine interfaces based
on electromyographic (EMG) signals have been developed
[9]–[12]. Huang et al. used EMG signals of 16 muscles to
recognize different locomotion modes [9]. In the experiment,
eight able-bodied subjects and two transfemoral amputees
were asked to perform seven locomotion modes. With linear
discriminant classifier, they obtained promising recognition
results. Then the authors extented their previous work by
implementing the interface with the sensor fusion method [12].
EMG signals and ground reaction forces/moments measured
from the prosthetic pylon were used as the input to the
classifier. In the experiment, five amputees were recruited
and six static locomotion modes were monitored. In addition
to EMG sensors, researchers used mechanical signals as the
interface for locomotion mode recognition, such as inertial

signals [13]–[15] and foot pressures [16]. Yang et al. utilized
motion sensors to classify continuous human actions [13].
Each sensor node was embedded with a triaxial accelerometer
and a biaxial gyroscope. The authors classified thirteen kinds
of motions and obtained promising results. Recently, Wang
et al. developed pressure insoles to measure the foot pressure
[16]. The average recognition errors of five locomotion modes
were 19.6%, 12.6%, 5.2% and 6.3%, respectively.

Challenges of recognizing locomotion modes using current
approaches still exist. EMG signals precede the movement
and are useful to predict motion intent [12]. However, surface
EMG signals are weak and prone to external noise [17].
To obtain signals with higher quality, the sensors have to
be fixed on the skin and the positions of the sensor nodes
have to be selected carefully each time. Moreover, EMG
signals of the residual limb may not be available due to
the muscle loss. Inertial signals can accurately record the
kinematic information of human motion and the sensors can be
highly integrated due to the development of MEMS. However,
the noise and the drifting of the signals limit the performance
of the inertial sensors. To regulate the signals, more sensors for
compensation have to be added which are independent sources
of noise. The foot pressure is an important parameter during
locomotion with physical significance. However, the signals
of foot pressures lag behind the motions.

In our previous work [18], we have developed a capacitance
sensing system for locomotion mode recognition. The system
records the shape changes of the leg muscles which includes
two capacitance rings on the thigh and the shank respectively.
To validate the capacitive system, an able-bodied subject
was recruited and nine locomotion modes were measured.
Satisfactory recognition results are obtained. However, there
are some limitations in this system. Firstly, similar to EMG
based systems, the sensing bands have to contact with the
skin directly, which is inconvenient in daily use. Secondly,
the position of the capacitance ring on the thigh has to be
selected each time to prevent from gliding down. Thirdly,
the system was only validated on able-bodied subjects. The
situations of the system on amputees can be different. In this
paper, we designed a non-contact capacitance sensing system
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Fig. 1. The sensing method of the capacitance system. The human body is
a conductor and can be seen as the ground. The copper film and human body
forms a capacitor. The stump sock makes the dielectric of the capacitor. The
stump sock usually contains two layers of sock made of nylon and a layer of
cushion. In fact, the dielectric material is not the key factor, as long as it is
nonconductive.

for transtibial amputees which record the capacitance changes
between the residual limb and the socket. The electrodes were
placed on the inner surface of the socket. The sensing circuit
measured the capacitance changes by recording the charging
time. To preliminarily validate the designed system, a transtib-
ial amputee was recruited and seven locomotion modes were
monitored. In this paper, continuous classification method was
used, and we segmented a gait cycle into two phases-stance
phase and swing phase. To detect the gait phases, a single-
foot pressure insole was used. With the quadratic discriminant
analysis (QDA) classifier, the recognition accuracies were
95.0% for swing phase and 93.8% for stance phase.

This paper is organized as follows. In Section II, we describe
the design of the capacitance sensing system, including the
setups of the electrodes and the processing circuits. Exper-
iment protocol and classification methods are illustrated in
Section III. The performance of locomotion mode recognition
is verified by experimental results in Section IV. Discussion is
shown in Section V and we conclude in Section VI.

II. MEASUREMENT SYSTEM

A. Sensing Front-Ends

The interaction information between the residual limb and
the prosthetic socket can be useful for locomotion mode
recognition. The main design concept of the proposed system
is to detect the interaction information of different locomotion
modes with a set of capacitors. The copper film that was fixed
on the inner surface and human body made up the capacitance
electrodes (see Fig. 1). The stump sock in the middle made
up the dielectric of the coupling capacitor. During the motion,
the contact forces between the residual limb and the socket
change periodically. Meanwhile, the forces result in periodic
deformations on the stump sock. Therefore, the capacitance
can reflect the motions of the lower limbs.

The distribution of the stump/socket interactions varies with
the motion of the lower limb. Most of the human motions take
place in the sagittal plane. What’s more, for the transtibial
amputees, the side parts of the socket can clamp the knee
during the swing periods to prevent from gliding down.
Therefore, the positions of the electrodes were placed on three
parts, the anterior part the posterior part and the coronal parts,
which is shown in Fig. 2. For the anterior part, two electrodes
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Fig. 2. The positions of the capacitance electrodes inside the socket. Here
we just take the socket of left leg as an example. The electrodes of channel
1 and channel 2 were fixed on the medial side and lateral side respectively,
which was the same as the right leg.

were fixed along the front of the tibia. For the posterior part,
two electrodes were placed close to the residual gastrocnemius.
The other two electrodes were fixed on the lateral side and
medial side of the patella.

B. Sensing Circuit

The deformation of the stump sock produces tiny but
clear changes of capacitance during the human motion. In
our previous work [18], we used AC signals to couple the
electrodes and the impedance of the capacitors were recorded.
The dielectric of the capacitors was the human muscle, and
the range of the capacitance was 1 to 30 nF. In this study,
the capacitance changes can be much weaker than [18], since
the deformation of the stump sock is not so prominent as
human muscles and the dielectric constant of nylon is much
smaller than human body. In this paper, we measured the
charging time to record the capacitance changes. An integrated
microchip PCap01AD (Acam Inc.) was used to convert the
capacitance charging time to digital data. This conversion
principle offers high resolution at conversion times as short as
2 us. The programmable microchip can sample seven channels
of capacitance at most. The output data format of each channel
is 21-bit data which stands for the ratio of capacitance and the
reference capacitor. The PCap01AD worked in the maximum
speed mode in which the programs would run in the static
random access memory (SRAM). Thus, PCap01AD should be
programmed first after power on. The program of PCap01AD
controls the sampling parameters and sends out the results to
the micro control unit (MCU) via serial peripheral interface
(SPI).

C. Foot Pressure Insoles

The foot pressure insoles were used for detecting gait
phases. To collect as much information as possible from foot
pressures, the positions of the sensor have to be selected. As
shown in the left bottom of Fig. 3, the sensors were placed at
the hallux toe, the first metatarsal bone, the spot between the
fourth and fifth metatarsal bone and the calcaneus tuberosity.
The positions were similar to previous studies [16], [19], [20].



FlexiForce A401 (Tekscan, Inc.) was used as the force
sensor in this study. The FlexiForce is a kind of tiny thin
force-sensitive resistors (FSRs) whose resistors vary with the
pressure. The resistance of the sensor is inversely proportion
to the applied force on it. Thus, we designed an inverting
amplifier circuit based on LMV324 (STMicroelectronics Inc.)
to convert the force to the voltage. The voltage was then
sampled with the 12-bit analog-to-digital converter (ADC).

D. Data Acquisition

The sensors and all the processing circuits worn on human
body are shown in Fig. 3. The control circuit on the waist
controls the sequence of all the sensor data. The sampling
data set was then sent out to the computer by the wireless
module. STM32F103 (STMicroelectronics Inc.) was used as
the MCU of the processing circuits. STM32 is an ARM-based
32-bit micro control chip with 72 MHz frequency. It is also
integrated with a 12-bit ADC controller which was used for
sampling the voltage of foot pressure insoles. The wireless
module was built based on nRF24L01P (Nordic semiconductor
Inc.) which is a single-chip 2.4GHz transceiver.

The sampling rate of the sensors was 100 Hz. The control
circuit collected all the sensor data and sent out wirelessly.
Recommended standard 485 (RS485) bus was used for com-
munication between the sensor nodes. The data sequence was
controlled with the polling method. In this method, each
sensor node was assigned a device number (ID). The sampling
interval (10ms) was separated into several time slices. In each
slice, the control circuit broadcast an ID and waited for the
response. Then the circuit with the same ID would send out
the result. The polling method guaranteed the unobstructed
communication on the bus. The wireless module would send
out the data of one sample to the receiver circuit during the
sampling interval. In the designed system, Cyclic Redundancy
Checking (CRC) and automatic retransmission methods were
used to prevent data error.

III. METHOD

A. Subject and Experiment Protocol

One transtibial amputee was recruited in this experiment and
provided written and informed consent. The subject is a 55
years male with 178 cm in height and 76 kg in weight. In this
experiment, seven locomotion modes were investigated, in-
cluding standing, normal walking, stair ascending/descending,
ramp ascending/descending and obstacle climbing. There were
seven groups of monitoring in this experiment. In each group,
there were four trials for each locomotion mode. At the
intervals of the groups, the subject was asked to rest for five
minutes. For normal walking, the subject was asked to walk
at his self-selected pace for six strides. There was a four-
step staircase for stair ascending/descending. For the task of
ramp ascending/descending, the inclination of the ramp was
30 degrees. For standing, the subject was asked to stand still
for 8 seconds during each trial. The table below shows the
number of gait cycles of one group.
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Fig. 3. Left top: The positions of the capacitance electrode on the socket. The
electrodes were pasted on the inner surface with double-side adhesive tapes.
The wires of the electrodes were shielded lines to prevent from distributed
capacitance. Left bottom: The foot pressure insole and the positions of the
sensors. Right: The placement of the sensors and boards on human body. The
control circuit and the lithium battery were on the waist. All the processing
boards were fixed on human body with velcro strips. HYV4x1/0.4 line was
used to communicate on human body.

TABLE I
GAIT CYCLES AND TRIAL TIME OF DIFFERENT LOCOMOTION MODES

Task Gait cycles Trial time (s)
Stair ascending 2 12

Stair descending 2 12
Obstacle climbing 3 12
Normal walking 6 12
Ramp ascending 2 10
Ramp descending 2 10

Standing - 8

B. Classification Method

The capacitance signals reflect the interaction forces be-
tween the residual limb and the socket. Although not linearly
dependent with the forces, the signals are cyclic during the
motions and similar in different gait cycles of the same
locomotion mode. Different from our previous study [18] and
some other related studies (e.g. [9]) which used data of four
discrete phases to classify the locomotion modes, in this study,
two phases (stance and swing) were segmented by detecting
the foot contact (FC) and foot off (FO) from a stride. The
foot pressure insoles was used to automatically detect the gait
events of the amputated limb. The summation of the four-
channel foot pressure signals was filtered with one order lag
filter to remove the noise, and a threshold was defined to detect
FC and FO. To continuously classify the locomotion modes,
data of sliding windows was used for feature calculation. In
this study, the window length was 250 ms and the window
increment was 10ms. The data was labeled the new phase if
the analysis window slid into it more than half of a window
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Fig. 4. The average capacitance signals (blue lines) and the variation (red dotted lines) over different gait cycles. The signals were time normalized to a
gait cycle (from a foot contact to the next foot contact). Each row of the figures stands for one of the six channels of the signals (from CH1 to CH6).Each
column stands for a specific locomotion mode. W stands for normal walking, Ob stands for obstacle climbing, SA/SD stand for stair ascending/descending
and RA/RD stand for ramp ascending/descending respectively. The base line of the signals keeps at zero after the DC notch filter.

length.
Quadratic discriminant analysis (QDA) classifier was used

in this study. QDA is a nonlinear classifier and is capable of
classifying the data when the boundaries are difficult to define.
What’s more, QDA is time efficient for both training and
classifying. Nine time domain features were extracted from
the analysis windows as the following expressions:

f1 = avg(X),
f2 = std(X),
f3 = sum(abs(diff(X))),
f4 = avg(diff(X)),
f5 = max(X),
f6 = min(X),
f7 = sum(abs(X)),
f8 = std(abs(diff(X))),
f9 = corr(X),

where X is the data matrix of one analysis window. avg(X)
and std(X) are the average value of X and the standard
deviation of X respectively. diff(X) is the difference of X .
mad(X) is the mean absolute deviation of X . abs(X) is the
absolute value of X . corr(X) is the correlation coefficient of
two data channels of X . As a result, a 63-dimension feature
vector set was obtained for training and classification.

In this study, 7-fold Leave-one-out cross-validation
(LOOCV) was used for the training and testing of the classi-
fier. In this procedure, data of one group of experiment was

used as the testing data set, and the rest of the data was used
as the training set. The process was repeated for seven times
until all the group data was used for testing set.

The overall recognition error (RE) is calculated by

RE =
Nmis

Ntotal
× 100% (1)

where Nmis is the number of misrecognized testing data and
Ntotal is total number of testing data.

To better illustrate the recognition performance of certain
locomotion patterns, confusion matrix was defined as

C =




c11 c12 ... c17

c21 c22 ... c27

... ... ... ...
c71 c72 ... c77


 (2)

where each element is defined as

cij =
nij

n̄i•
× 100%. (3)

nij is the number of testing data in mode i recognized as
mode j and n̄i• is the total number of testing data in mode
i. A higher value of cij (i 6= j) denotes that it is easier for
mode i to be misclassified as mode j.
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Fig. 5. The structure of the filter of a single channel. x(n) stands for the
input signal and y(n) stands for the output. The parameters α and β were all
the same for each channel.

IV. EXPERIMENTAL RESULTS

A. Signal Preprocessing

The raw signals of C-Sens reflected the interaction forces
between the residual limb and the socket. The average peak
to peak capacitance signals ranged from 0.5 to 2 picofarads.
Some tiny shifting of the signals can reduce the repeatability
and recognition performance. The drifting of the baseline
was influenced by the distributed capacitance and temperature
changes. Although the shielded lines were used to keep from
distributed capacitance, the influence still exists. In addition,
the frequency of the drifting was very low (lower than 0.1 Hz),
so the high pass filter can not be used. To solve this problem, a
DC notch filter [21] was designed to remove the low-frequency
drifting, as is shown in Fig. 5. In the DC notch filter, α
determined the phase response, while the amplitude response
was determined by both α and β. The signal distortion caused
by the filter can be ignored for the task of motion mode
recognition. Furthermore, the filter can be implemented real-
timely. The filtered signals of different locomotion modes are
shown in Fig. 4. The task of standing was not shown, since
the signals were almost straight lines for all the channels.

B. Recognition Performance

After the experiment, 28 trials of data was collected. For
the task of normal walking, stair ascending/descending, ramp
ascending/descending, and obstacle climbing, the continuous
phase dependent method was used. For the task of standing,
the foot pressure remained nearly unchanged. Analysis win-
dows were randomly selected from the experiment trials and
feature extraction method was the same as all the other tasks.
To automatically detect the phases, thresholds of foot contact
and foot off were set to the 1/10 of the maximum value. With
the thresholds set and one order lag filter, all the gait phases
were correctly detected.

The overall recognition accuracies during stance phase and
the swing phase were 93.8% and 95.0% respectively. The
detailed results of the recognition performance were shown
in Fig. 6. The modes of standing, normal walking, obstacle
climbing and ramp ascending performed better than the other
locomotion modes. Stair descending performed the worst for
both phases. Among the misclassification data, most part of it
was misclassified as normal walking. One of the reasons is that
during stair descending, the subject walked in small steps (one
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Fig. 6. Recognition performance of seven locomotion modes of stance phase
(a) and swing phase (b). Diagonal values of the chart of confusion matrix
represent the recognition accuracies of corresponding motion modes. And
off-diagonal values indicate the confusability of two relevant motions. St is
short for standing.

foot stepped on the staircase then the other foot followed to
the same staircase) which was very similar to normal walking.

V. DISCUSSION

The main design concept of the proposed C-Sens is to detect
the interaction information of different locomotion modes with
a set of capacitors. Different from EMG based systems, the C-
Sens solves the problems of daily wearing. The sensing bands
have no direct contact with human skin. It is more convenient
in daily uses.

The interaction between the socket and the residual limb
can provide useful information of human motion. The de-
signed system in this study (C-Sens) record the interaction
by capacitance signals. Although not linearly dependent with



the contact forces, the signals could well record the the
difference between different locomotion modes and showed
good repeatability in the same ones. The C-Sens improved
our previous work [18] in the following aspects. Firstly, C-
Sens can be built inside the socket and non-contact with the
skin, making it more applicable in daily life. Secondly, C-
Sens showed higher stability in fixing on human body than
the previous system. Our first capacitance system was placed
on human body with two sensing bands and might glide down
during the experiment. Thirdly, the sensing circuit had higher
resolution than the previous system. The capacitance changes
were several picofarads which were much smaller than the
previous ones. Therefore, the signals of swing phase is obvious
as the stance phase. Compared with our previous work [18],
the tasks of ipsilateral turning, contralateral turning, giant-step
walking and sitting were removed from the experiment and
ramp ascending/descending were added, since some locomo-
tion modes like turning and sitting were not so important for
the control of powered lower-limb protheses.

In the study of [12], four phases detected from both feet
were used to segment a gait cycle and sensor fusion method
was used to recognize motion modes. In our study, only
two phases of a single foot were used which reduced the
redundancy of the sensors on human body. Moreover, only
one type of sensor was used in our study. Although the
recognition accuracy of the stance phase was lower than the
static state of [12] (99%), the performance of the swing phase
was comparable (95%), during which the performance was
more important for prosthetic control.

VI. CONCLUSION

In this paper, we have proposed a non-contact capacitance
sensing system (C-Sens) for recognizing locomotion modes of
transtibial amputees. The system has higher resolution than
the previous one and more stability in wearing on human
body. The performance of the locomotion modes recognition
was encouraging. Capacitance sensing for locomotion mode
recognition showed comparable results than EMG based sys-
tems. With further studies, the sensing approach can become a
potential tool for the control of powered lower-limb prostheses.

In the future, more potentials of C-Sens need to be ex-
ploited. The positions of the electrodes and the phase detection
method will be optimized. In addition, to control the prosthesis
real-time, sensor fusion with other types of sensors and motion
transitions will be studied.
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