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Abstract— Robotic rehabilitation is an effective platform
for sensorimotor training after neurological injuries. In this
paper, an adaptive controller is developed and implemented for
the RiceWrist, a serial-in-parallel robot mechanism for upper
extremity robotic rehabilitation. The model-based adaptive
controller implementation requires a closed form dynamic
model, valid for a restricted domain of generalized coordinates.
We have used an existing method to define this domain and
verify that the domain is widely within the range of admissible
tasks required for the considered application (movements-based
wrist and forearm rehabilitation). Simulation and experimental
results that compare the performance of the adaptive controller
to a proportional- derivative controller show that the trajectory
tracking performance of the adaptive controller is better
compared to the performance of a PD controller using the
same values of feed- back gains. Further, comparable absolute
error performance is obtained with the adaptive controller
for feedback gains nearly one third that required for the PD
controller. With the lower gains used in the adaptive controller,
good tracking performance is achieved with a more compliant
controller that will allow the subject to indicate their ability
to independently initiate and maintain movement during a
rehabilitation session.

I. INTRODUCTION

Rehabilitation of patients with impairments due to neu-
rological lesions, including stroke and spinal cord injury,
mostly includes repetitive movements which are known to
improve muscle strength and movement co-ordination [1].
The goal of neurorehabilitation is to improve functional
outcomes by promoting plasticity in the brain and spinal
cord. To fulfill this goal, therapy has to be intensive with
long duration and high repetition numbers.

Robotic devices are well-suited to rehabilitation after
stroke and SCI because they can ensure consistency of
therapeutic interactions at high intensity and repetitions.
Robotic systems also enable the objective and quantitative
performance evaluation of patients both during and after the
therapy sessions.In addition, virtual reality implementations
can provide a unique medium where therapy can be provided
within a functional and highly motivating context [2], and
consequently the intensity of the therapy can be increased.
Indeed the results of clinical studies involving robotic reha-
bilitation protocols support the idea of implementing these
devices in treatment of stroke [3] and SCI patients [4].

A critical area of research in rehabilitation robotics is
the development of control algorithms able to regulate the
interaction between the device and the patient, so that the
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selected exercises can promote motor plasticity, and therefore
improve motor recovery [5]. The differences among assisting
control applications mainly arises at the degree of assistance.
Lum et al. [6] used the MIME upper extremity rehabilitation
robot for shoulder and elbow neurorehabilitation in subacute
stroke patients, using a position control assistance strategy.
This control strategy led to improvements in physical perfor-
mance and motor learning, compared to the control groups,
for subacute stroke patients [6] and with unimpaired patients
[7]. Despite these positive outcomes, it was shown that in
chronic patients, passively moving patients’ limbs with a
robotic device does not contribute to recovery, suggesting
that recovery requires active participation [8]. An alternative
strategy is triggered assisting control, in which the move-
ment is initiated by the patient according to a predefined
measure (such as a force/torque threshold), and the robotic
device provides assistance for the rest of the movement [9].
Although this approach increases the participation of patient
during the subject-driven part, during some phases of the
interaction the patient is completely passive [10].

Because fixed gain controllers may provide more assis-
tance than is needed by the patient, researchers have begun
to develop assist-as-needed controllers [5]. Such a controller
adapts its parameters based on online measurement of the pa-
tient’s performance. For example, Wolbrecht et al. [11] devel-
oped an assist-as-needed control algorithm which consisted
of two main parts: a passivity based adaptive controller and a
forgetting term that reduced progressively robot contribution
to movements, so to promote subjects’ active participation.
The main idea behind choosing an adaptive controller was
to be able to model both the dynamics of the orthosis, and
the patient’s ability and effort. Hence the controller would
provide necessary torque to complete the movement with
an increased mechanical compliance. This controller was
implemented on Pneu-WREX [12], a pneumatically actuated,
4 degree-of-freedom (DOF), serial mechanism.

In this paper, we present the implementation of this adap-
tive controller on RiceWrist [13] (Fig. 1(b)), an electrically
actuated, 4 DOF serial-in-parallel mechanism. The trajectory
tracking performance of the controller is compared to per-
formance of a fixed gain PD controller both in simulation
and experimentally on the RiceWrist hardware.

II. METHODS

RiceWrist [13], is a wrist and forearm exoskeleton device;
its basic kinematic structure is depicted in Fig. 1(a). The
exoskeleton is comprised of a revolute joint for forearm
rotation, in series to a 3-RPS (revolute-prismatic-spherical)

2013 IEEE International Conference on Rehabilitation Robotics June 24-26, 2013   Seattle, Washington USA

978-1-4673-6024-1/13/$31.00 ©2013 IEEE 



(a)

(b)

Fig. 1. (a) 4 DOF RiceWrist employs a 3-RPS (revolute-prismatic-
spherical) parallel mechanism at the wrist module and a revolute joint at
the forearm (b) The physical hardware.

parallel wrist. The first DOF corresponds to forearm rotation,
while the two rotational DOFs of the robotic wrist correspond
to wrist flexion/extension and abduction/adduction. The dy-
namic equations of the system can be given as

M(q)q̈ + C(q, q̇)q̇ +G(q) = Fr + JTFp (1)

where q is a 4 × 1 vector of joint variables, M is the 4 ×
4 inertia matrix, C is the 4 × 4 matrix which represents
Coriolis/centrifugal terms, G is the 4× 1 gravity vector, Fr

is the 4 × 1 vector of forces applied by the actuators and
Fp is the 4 × 1 vector of forces applied by patient at the
end-effector (handle).

Because the system employs a closed-chain parallel mech-
anism, and because of the implicit nature of the loop equa-
tions, representing the equations of motion in the form of
Equation 1 is not straightforward [14]. However, using the
formulation in [15], it can be shown that the dynamical
equations of the RiceWrist can be expressed in the form
of Equation 1 and posses identical properties as open-chain
serial mechanisms. The important distinction, however, is
that the given dynamical model is valid only locally, i.e.
the domain of the generalized coordinates (q) is a bounded
and closed set (Ω) rather than the whole n-dimensional real
space (n corresponds to the number of DOF of the device,
in our case n = 4) [15]: q ∈ Ω, where Ω ⊂ <n.

Consequently, it can be said that the 4-DOF serial-in-
parallel mechanism possesses the two important properties,
of skew-symmetry [16], and linearity-in-the-parameters [17].

A multitude of model-based control schemes has been
developed and applied to robotic systems described by Equa-
tion 1 and their global stability has been proved exploiting

also the two properties described above. However, in order
to develop adaptive controllers for systems with parallel
chains, it is necessary to accurately define the domain of the
workspace of the parallel mechanism in which local stability
can be proved and to guarantee that the system is always
within this range during operation.

A. Domain of validity of the reduced model

In this paper, we will follow the modeling approach
described in [15], which is based on cutting-open a generic
parallel chain in a sub-set of rigid bodies or serial structures,
described in terms of n′ generalized coordinates q′ (n′ > n).
In the parallel structure, such coordinates satisfy a set of
n′−n constraint equations, that for a holonomic system can
be written in the form:

φ(q′) = 0. (2)

This implies that the generalized coordinates q′ are not in
general independent, but are restricted to a subspace of <n,
namely to the domain U′ = {q′ ∈ <n : φ(q′) = 0} and are
named dependent generalized coordinates.

Normally, it is possible to choose a set of n independent
generalized coordinates q among the n′ coordinates q′. In
this case, the mapping between q and q′ can be expressed
by a selection function such that q = α(q′). Combining this
result with (2), the complete kinematic model of the parallel
manipulator can be expressed as:[

φ(q′)
α(q′)

]
= ψ(q′) =

[
0
q

]
(3)

Accordingly, we can define the Jacobian matrix applied to
the generalized model as:

ψq′(q
′) =

∂ψ

∂q′
(4)

Since a complete, closed-form kinematic model is not
available for the considered system, an iterative routine is
implemented to obtain the entire generalized kinematic status
of the manipulator. It is possible to define the error between
a measured pose (defined in terms of generalized variables
q) and the calculated pose (defined in terms of q′) as:

ψ(q, q′) =

[
φ(q′)
α(q′)

]
−
[

0
q

]
(5)

and ψq′(q
′) analogously as in (4).

Under the described formalism, the method described in
[15] allows to estimate the size of the region of validity
of the reduced model. Its main results can be summarized
as follows. We start by defining D′ as a closed rectangular
interval in <n′

where either the constraint functions are not
satisfied, or

||ψq′(q
′)−1|| ≤ c1. (6)

It can be demonstrated that given q′? ∈ D′, if φ(q′?) = 0,
then the closed sphere Br(q?) defined in the domain of
independent generalized coordinates, with radius r, centered



around the initial point q? is such that every point in Br(q?)
verifies the following constraint:

||[ψq′?
]−1[ψq′ − ψq′?

]|| ≤ ζ1 < 1. (7)

The radius r, where the described reduced model is valid,
can be calculated as:

r =
ζ1(1− ζ1)

c21c2
, (8)

where the constant c2 is given by:

c2 = ||B||, (9)

and B is a matrix of elements bi,j that can be obtained by
maximizing the derivative of the Jacobian matrix with respect
to specific generalized coordinates:∥∥∥∥∥∂[ψq′ ]i,j

∂q′

∥∥∥∥∥ ≤ bi,j . (10)

This allows to define the domain in which the mapping
between dependent and independent generalized coordinates
can be applied as an invertible diffeomorphism thus allowing
to model the system in the form (1). However, another result
in [18] shows that this domain can be extended for a generic
trajectory in D, if it is discretized with a sufficiently small
step size. In particular, if the trajectory qdes(t) is defined in
actuated joints coordinates q so that

qdes(ti)− qdes(ti+1) ≤ r (11)

then the domain of existence of the reduced model is
extended to the whole trajectory qdes(t). In other words,
given a minimum control sampling rate, this relation poses
a constraint on the maximum desired velocities for actuated
joints.

The described method has been applied to the parallel
portion of the RiceWrist. The following constraint equations
were determined, based on the vector loop equations (ref. to
Fig. 1(a)).

−−−→
O4R1 +

−−−→
R1B1 +

−−−→
B1O3 =

−−−→
O4O3 (12)

−−−→
O4R2 +

−−−→
R2B2 +

−−−→
B2O3 =

−−−→
O4O3 (13)

−−−→
O4R3 +

−−−→
R3B3 +

−−−→
B3O3 =

−−−→
O4O3 (14)

The derivatives of Equations 12-14 have been obtained
in a symbolic form and the constants c1 and c2 have been
calculated as described in Equations 6 and 9 and are shown
in Fig. 2 as a function of the orientation of the RiceWrist.

It can be seen that the maximum value of constants c1 and
c2 strongly depends on the specific extent of the workspace
in which those constants are calculated. Considering as an
example the domain consisting of 1-D movements (rota-
tion along the x4-axis which corresponds to wrist flexion-
extension), it is possible to estimate a radius of validity
of the reduced model equal to 1 × 10−3, expressed as
a function of normalized actuated links length (refer to
[13] for a detailed description of the RiceWrist kinematic
model). This radius of validity poses a constraint on the
maximum admissible velocity in a 1-D flexion-extension

Fig. 2. Calculation of constants c1 and c2 as a function of end-
effector coordinates. α represents radial-ulnar deviation, while β represents
flexion/extension angle.

Fig. 3. Inverse kinematics for a constant-velocity movement requiring
a transition from 0 to -30 deg of flexion-extension in 1 s, using a 1
ms discretization time. The necessary maximum change in actuated links
length is equal to 2.7×10−4 (3.7 times lower than the calculated radius),
implying that the same trajectory can be theoretically resampled to occur
in a duration of 0.27 s with the same sampling frequency (1 kHz), still
respecting condition (11) for this particular task.

movement as shown in the numerical example reported in
Fig. 3, where a constant-velocity flexion-extension profile
is imposed (transition from 0 to 30 deg in 1 s), and the
resulting normalized actuated links lengths are calculated. It
can be seen that the maximum reachable velocity for a 1-D
rotation (30 deg change in end-effector rotation in 0.27 sec,
or 111 deg/s peak velocity) is much higher than the range
compatible with wrist rehabilitation therapy, thus validating
the proposed reduced model for dynamical modeling and
control of the RiceWrist for rehabilitation tasks.

B. Adaptive controller theory

We now present the adaptive controller which is based
on the control algorithm developed by Slotine and Li [17].
We adopt the formulation presented in [19] and [16] which
exploit the passivity property of the robotic devices.

In our formulation, we develop the controller in task space,
rather than in joint space. This approach is selected because
we wish to abide by the formulation in [11] which makes it



more clear to follow the construction of the regressor matrix
(refer to Equation 19-21 and Equation 29). The construction
of the regressor matrix is an integral step in the construction
of the controller.

Let us first define the dynamic equations of the system as

MT (x)ẍ+ CT (x, ẋ)ẋ+GT (x) = Fr + Fp (15)

where x is a 4 × 1 vector of end effector position. MT ,
CT and GT are the 4 × 4 inertia matrix, the 4 × 4 Corio-
lis/centrifugal terms matrix, and the 4 × 1 gravity vector,
respectively, which all consist of functions of either end
effector position x or velocity ẋ. The subscript T specifies
that the given entities are expressed in task space, in contrast
to the representation given in Equation 1. Fr is now the 4×1
vector of forces applied by the actuators which is mapped
to the task space by the transpose of the Jacobian of the
mechanism, and Fp is the 4× 1 vector of forces applied by
patient at the end-effector (handle).

Let us define the tracking error as x̃(t) = x(t) − xd(t),
where x(t) is 4 × 1 actual joint position, and xd(t) the
desired trajectory which is at least twice differentiable. Both
x(t), xd(t) are defined such that the corresponding joint
variables q(t), qd(t) ∈ Ω such that Equation 15 is valid.
Consider the following control law:

Fr = M̂T (x)a+ ĈT (x, ẋ)v + ĜT (x)− F̂p −KDr (16)

where M̂T , ĈT and ĜT are the estimates of the dynamics of
the system, F̂p is the estimate of the forces coming from the
patient, KD is a symmetric positive definite feedback gain
matrix, and

r = ˙̃x+ Λx̃ = (ẋ− ẋd) + Λ(x− xd)
v = ẋd − Λx̃ = ẋd − Λ(x− xd)
a = v̇

(17)

where Λ is a 4 × 4 constant, positive definite, symmetric
matrix. Note that the desired position, velocity and acceler-
ation are all bounded. The substitution of control input into
Equation 15 will bring

MT (x)ẍ+ CT (x, ẋ)ẋ+GT (x)− Fp

= M̂T (x)a+ ĈT (x, ẋ)v + ĜT (x)− F̂p −KDr
(18)

As stated above, the system dynamics are linear in terms
of system parameters, and they can be modelled as

Y b̂ = M̂Ta+ ĈT v + ĜT (19)

where Y is a 4×m regressor matrix which contains known
functions of x, ẋ, v and a, and b̂ is the m×1 vector containing
estimates of unknown system parameters. Here it is assumed
that the estimates of the forces coming from the patient can
be modelled as

Y ĥ = F̂p (20)

where Y is the regressor matrix used in Equation 19 and h
is the vector of parameters that represent the patient’s ability
and effort. Furthermore, we define overall system parameters,
θ, as θ = b− h so that

Y θ̂ = Y b̂− Y ĥ (21)

This relationship represents the difference between forces
required to move the patient’s limb, and the forces generated
by the patient [11], and subsequently a further discussion for
both Y and θ will be conducted.

By using Equation 21 and considering that ẍ = ṙ+ a and
ẋ = r + v, Equation 18 can be written as

MT (x)ṙ + CT (x, ẋ)r +KDr =

M̃T (x)a+ C̃T (x, ẋ)v + G̃T (x)− F̃p = Y (x, ẋ, v, a)θ̃ := Ψ
(22)

where (̃.) = (̂.)−(.). Next, the adaptation law is defined such
that the mapping in Equation 22 from −r to Ψ is passive.

˙̃
θ = −Γ−1Y T r (23)

where θ̃ is the parameter estimation error and Γ is a sym-
metric positive definite matrix. Then, by using Equation 22
and 23 the passivity of the mapping from −r to Ψ can be
shown as follows:

rTY θ̃ = − ˙̃
θT Γθ̃ (24)

hence,

−
∫ t

0

rT Ψdτ =

∫ t

0

˙̃
θT Γθ̃dτ

=
1

2

∫ t

0

d

dτ
(θ̃T Γθ̃)dτ

=
1

2
θ̃T (t)Γθ̃(t)− 1

2
θ̃T (0)Γθ̃(0)

≥ −1

2
θ̃T (0)Γθ̃(0)

(25)

Please note that the derivative of the parameter estimation
error is equal to the derivative of the parameter estimates
( ˙̃
θ =

˙̂
θ), and after defining the adaptation law, the control

law can be written in a more compact form as

Fr = Y θ̂ −KDr (26)

The parametrization of both the system dynamics and the
forces coming from the patient (Equations 19-21) indicates
that the matrix of known functions, Y , consists of both the
inertia components, which represent the known functions
of the system dynamics, and the components that represent
known functions of the patient’s ability and effort. The
inertia components can be acquired by separating out the
linear parameters from the equations of motion. Practically,
though, separating these parameters is difficult especially
for the systems that include parallel mechanisms in their
structure, because of the existence of multiple closed-chains.
However, the movements in the rehabilitation of patients with
impairments due to neurological lesions are at low speeds
and the assumption of being in a quasi-static condition can be
made. Consequently, the method proposed in [11] has been
adopted and simple models Ia and Iv have been chosen to
represent the inertia components of the regressor matrix Y .

Considering that the capability of a patient to apply forces
depends on the location of the hand, Gaussian radial basis
functions (RBF) are used to model the ability and effort



of the patient. Gaussian RBFs are real-valued functions
whose values depend on the distance from the origin [20].
Gaussian RBFs are bounded, strictly positive, and abso-
lutely integrable. Any continuous function, not necessarily
infinitely smooth, can be uniformly approximated by linear
combinations of Gaussian RBFs [21] which are defined as

gn = exp(−‖x− µn‖2/2σ2) (27)

where gn is the nth Gaussian RBF, x is the current location
of the RiceWrist’s end-effector, µn is the location of the nth

Gaussian RBF, and σ is a smoothing constant. In total, 80
Gaussian RBFs are assigned to the workspace. We decided
the number functions experimentally. Although increasing
the number of the functions would enable better approxi-
mation, it would also increase the expense of computation.
The forces coming from the patient are parameterized using
these 80 RBFs. The vector of Gaussian RBFs is defined as

g = [g1 g2 ... g80]T (28)

Consequently the regressor matrix which represents both the
known functions of the system dynamics (simple models Ia
and Iv) and known functions of patient’s ability and effort
(Gaussian radial basis functions) is defined as

Y 4×328 =


gT 0 0 0

Ia, Iv, 0 gT 0 0
0 0 gT 0
0 0 0 gT

 (29)

The unknown parameter vector θ is a 328×1 vector which
is estimated using Equation 23.

III. RESULTS

We present the trajectory tracking performance of the
implemented adaptive controller by comparing it with the
trajectory tracking performance of a PD controller in simula-
tion, and experimentally using RiceWrist rehabilitation robot.
The desired movement, for both simulation and experimental
investigation, is chosen as a single axis rotation in the
task space to be able to show the performance of different
controllers clearly by only altering the controller gains for
the given DOF. The movement is a sinusoidal rotation around
x4 (which corresponds to wrist flexion/extension) with a
frequency of 0.95 Hz and an amplitude of 0.3 radians (17.2
degrees) and it lasts 9 seconds. The frequency is specified
considering the human movement capability. The adaptation
gains in Γ are set high in order to achieve a fast adaptation
solely for the compactness of the presentation of the results.
For rehabilitation applications, lower adaptation gains will
be used, in order to grant the patient a proper amount of
time required to get acquainted with the modified level of
assistance.

A. Simulation

For the simulation, the position and velocity level inverse
and forward kinematics, and the forward dynamics equations
for the 4-DOF RiceWrist were formulated using Autolev

(Online Dynamics), a symbolic manipulator software de-
signed to both derive the equations of motion for multi-body
systems by using Kane’s method and generate compact C,
MATLAB, and Fortran codes for real-time applications [22].

Interaction with subjects was simulated including a, 1 kg
virtual load at the end-effector of the mechanism during
the formulation of the forward dynamics equations, thus
mimicking the situation in which the patient keeps his/her
hand relaxed.

We specify 0.6 degrees as the allowable absolute error
for the adaptive controller, and the gains (both feedback and
adaptation gains) are tuned accordingly. The PD controller
used for the comparison uses the same feedback gains.
The absolute error values for the both controller, and the
corresponding trajectories are given in Fig. 4.

B. Experimentation

In the experimental comparison of the controller perfor-
mances, the actual RiceWrist prototype is controlled, using
a Simulink (The MathWorks, Inc.) software translated into
real time code using QuaRC (Quanser Inc.), at a sampling
rate of 1 KHz. A healthy subject placed his arm in to the
exoskeleton and maintained a relaxed pose throughout the
movement. The allowable absolute error is chosen again to
be equal to 0.6 degrees, and we applied the same procedure
explained in Subsection III-A to tune controller gains. The
absolute error values and the corresponding trajectories are
given in Fig. 5.

Both the simulation and the experimentation results show
that, as desired, the trajectory tracking performance of the
adaptive controller is better compared to the performance of
a PD controller using the same values of feedback gains.
Rather than relying on high feedback gains to drive down
error, the adaptive controller learns the model of both the
dynamics of the orthosis, and the patient’s ability and effort.

IV. CONCLUSIONS

We have presented the implementation of a model-based
adaptive controller for a serial-in-parallel manipulator, the
RiceWrist. The implementation of such a controller requires
the development of a dynamical model that can be obtained
in a closed analytical form only for a restricted domain of
generalized coordinates. Such a domain must be defined in
order to prove controller stability. Here, we have applied
an existing method to define such domain, and we have
verified that the domain of validity of the reduced model
is widely within the range of admissible tasks required for
the considered application of wrist and forearm rehabilita-
tion. The adaptive controller was implemented in simulation
and experimentally on the RiceWrist robot, and trajectory
tracking performance was compared to that realized with
a proportional-derivative controller. The simulation and the
experimental results show that the trajectory tracking perfor-
mance of the adaptive controller is better compared to the
performance of a PD controller using the same values of
feedback gains. With the lower gains used in the adaptive
controller, good tracking performance is achieved with a
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Fig. 4. Absolute error (a) and actual trajectory (b) of both controllers,
in simulation, corresponding to the sinusoidal desired rotation around x4,
which corresponds to wrist flexion/extension, with a frequency of 0.95 Hz
and an amplitude of 0.3 radians (17.2 degrees).

more compliant controller that will allow the subject to
indicate their ability to independently initiate and maintain
movement during a rehabilitation session. We envision to
implement a decaying term to bound the assistive forces
according to the subject’s performance, in a future study.
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