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Abstract—We present a systematic approach that enables Even though active rehabilitation devices can impose
online modification/adaptation of robot assisted rehabilitation forces/movements to patients with all levels of impairment, it
exercises by continuously monitoring intention levels of patients s not trivial to extend adaptive assistance protocols to patients
utilizing an electroencephalogram (EEG) based Brain-Computer  yith severe disabilities. In particular, severe motor disability
x‘;‘;;icise (|(_BDC,;I))-tOInC|§Sagitfl)(/:uel?/reln¥-Vri|al"[§§ S';'Qgﬁgon?z'zzgw'?ggts) of these patients preclude their voluntary muscle control and
and desynchronization (ERD) patterns associated with motor EJhys_lcaI contrlbutlgn to the task, on which mos_t of the purrgnt
imagery; however, instead of providing a binary classification assist-as-needed” protocols depgnd. Bypas§|ng the impaired
output, we utilize posterior probabilities extracted from LDA neuromuscular system and enabling monitoring of the current
classifier as the continuous-valued outputs to control a rehabil- ~ State of brain activity, BCI technology promises an alternative
itation robot. Passive velocity field control (PVFC) is used as pathway to guide rehabilitation protocols to effectively induce
the underlying robot controller to map instantaneous levels of  activity-dependent brain plasticity and to restore neuromuscu-
motor imagery during the movement to the speed of contour lar function. In the literature, it has been shown that stroke
following tasks. In other words, PVFC changes the speed of patients are capable of operating a motor imagery based BCI

contour following tasks with respect to intention levels of motor  system as efficiently as healthy subjects [5].
imagery. PVFC also allows decoupling of the task and the speed

of the task from each other, and ensures coupled stability of Recently, there has been much interest in developing
the overall robot patient system. The proposed framework is  BC| technology to help restore function for patients with

implemented on ASSISTON-MOBILE—a series elastic actuator  geyere motor disabilities [6]—[8], including patients with severe
based on a holonomic mobile platform, and fea5|b|I|ty_stud|es with trauma due to stroke, cerebral palsy, or injury to spinal cord
healthy volunteers have been conducted test effectiveness of the or brain. These studi’es commonly rély on non-invasive elec-

proposed approach. Giving patients online control over the speed . . . .
of the task, the proposed approach ensures active involvement of troencephalogram (EEG) signals, since collecting these electric

patients throughout exercise routines and has the potential to Potentials is more practical, less expensive, and safer for the
increase the efficacy of robot assisted therapies. patients, compared to invasive techniques.

Rehabilitation therapy using EEG-based BCI systems can
l. INTRODUCTION be loosely categorized into two: systems that only represent
In recent years, design methodologies for rehabilitatiormovements corresponding to motor imagery, typically in a
robots have matured and robotic systems for rehabilitatioiirtual reality (VR) environment, and systems that physically
have become ubiquitous. Clinical trials investigating efficacyinteract with the patient to impose movement therapies corre-
of robotic rehabilitation provide evidence that robotic therapysponding to the motor imagery. Belonging to the first category,
is effective for motor recovery and possesses high potentidn [9]-[11] mental imagery experiments have been conducted
for improving functional independence of patients [1]-[4].on healthy subjects and/or stroke patients. The subjects are
However, to further increase efficacy of robot assisted therasked to imagine a movement while observing corresponding
apies, there is still a pressing need for evidence based therapSﬁUEﬂ feedback in a VR environment. These feasibility studies
protocols and novel systematic approaches to safely delivéshow that stroke patients can control virtual movements with
these therapies. In this paper, we focus on Brain Computet BCI system as well as healthy subjects. In [12], [13] mental
Interfaces (BCI) in robot assisted neurological rehabilitatioimagery experiments have been completed on healthy subjects
and propose a systematic framework to integrate BCI wittpy providing visual feedback through a physical robotic device
rehabilitation robots such that active participation of patientsinstead of a VR environment. In these experiments, subjects
especially patients with severe motor disabilities, in the therapgontrol the movements of a robotic arm without having any
session is assured. physical contact with the device. In [12], it is shown that
visualization of the physical robot improves the accuracy of

Since active participation of patients in therapies is knownye final decision about the task, while [13] presents feasibility
to be crucial for motor recovery, state-of-art rehabilitation ¢ ifferent control architectures.

robots regulate the physical interaction between the patient an

the device. These systems require patients to do positive work In the second category, rehabilitation robots are integrated
on the system such that movement exercises can be completedth BCI to impose necessary therapeutic exercises. For in-
These control techniques are commonly extended with “assisstance, [14]-[16] conduct experiments on healthy subjects
as-needed” protocols to provide minimal assistance to thand/or stroke patients asking them to imagine moving their
patient, since redundant amount of assistance is shown to ls@ms and use EEG classifications obtained from ERD/ERS
detrimental for recovery, while proper amount of assistance ipatterns to trigger the movement of a rehabilitation robot.
necessary to ensure safety and progress. In [14], ERD/ERS patterns are classified as “move” and “rest”
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using Naive Bayes Parzen Window to trigger reaching moveef “intention” (as reflected in the posterior probabilities
ments with MIT-Manus robot. In [15], CSP filter classifies the classifier), PVFC increases the speed of the robot which
“move” and “rest” commands to trigger reaching tasks withprovides useful feedback to the subjects to encourageeactiv
Light-Exos. In this study, trajectories are generated weith  participation to complete the task. In addition to the spefd
online method to desired targets that the subjects can ehoothe task, our approach also allows for on-line modificatiébn o
using an eye-tracking system. In [16], Filter Bank Commonthe task difficulty and the level of assistance as determined
Spatial Pattern algorithm classifies “go” and “rest” coma&n by the therapist [21]. Giving patients online control ovle t

to trigger MIT-Manus for reaching tasks. Studies [17] an8][1 speed of the task, the proposed framework ensures active
present clinical studies for the BCI integrated rehatiibia  involvement of patients throughout the exercises and has th
system in [16]. These studies demonstrate feasibility of BCpotential to increase the efficacy of robot assisted thesapi
integrated rehabilitation robotics. Moreover, resultditate a  Our overall control architecture is implemented on a multi-
better classification accuracy for mental imagery with ftapt DoF series elastic actuator,S&ISTON-MOBILE, developed
feedback when compared with providing only visual feedbackfor administering therapeutic table-top exercises togdsi

However, in all of these BCI integrated rehabilitation robo The paper is organized as follows. Section Il introduces
systems, patients’ intentions have only been used to taitia the main components that constitute the proposed BCl-based
and stop the movement therapy. With these approaches, onoehabilitation system. Section Il describes the BCI cormgpu
the movement is triggered, the patient may stop focusing oand provides details of offline, online sessions, and data
the movement until the next task. Besides, after a thresBold analysis operations. Section IV reviews the rehabilitatimbot,
overcome, the resulting movement is always the same, invarA ssisTON-MOBILE, used in our experiments, while Section V
ant of the amount of effort the patients put in to imagine thediscusses utilization of PVFC to integrate BCI with robot
movement. As a result, these systems cannot ensure active passisted rehabilitation therapies. Section VI providesifality
ticipation of patients in the movement therapy. Recenfl@][ studies and experimental results. Finally, Section Vlidodes
advocates the importance of real-time adaptation of momémethe paper and discusses future work.
therapies to correspond with the patients’ intention cagutu
by EEG-based BCI. Even though this study provides initial |l. BCI-BASED ROBOTIC REHABILITATION SYSTEM
feasibility studies showing two stroke patients contrallia The proposed BCl-based robot assisted rehabilitation sys-
Barrett WAM robot attached to their impaired arm, the real-tem consists of:
time adaptation of therap|e_s based on BCI _C|§.SSIfIC§.tI0n hasi_ Real-Time BCI Systerfor real-time, continual processing
been left as a part of their future work. Similarly, in [20] of patient intention, a Biosemi ActiveTwo EEG System is
intentions of the subjects are decoded every 300 ms and the usepd to measure fhe electrical activity of the b)r/ain The
state of the rc_)bot is updated either in a passive mode where th LDA algorithm is used to classify ERD/ERS patterns in
subjects are instructed to attempt a real/imaginary mowgme EEG sianals as “move” or “rest’. Instead of using the
or in an active mode where the subjects’ movements are guided bi gl ificati h ' : b g.s. :
by the device. Updating the robot state every 300 ms en- Inary classilication outputs, the posterior probabsitie

; . . . . extracted from the LDA classifier are directly used as
ables the system to be synchronized with subjects’ intastio

Welch’s method has been used to compute estimates for the EEgrgogﬁ?izorﬁzyjkgr?tsufﬁésrh:g dcgnt{ﬁ:etr:gbf)%iesd g:etr?]e
power spectral density to classify the user’s intention g’ “ p P y Y '

or “rest” ii. Re_habilitation Robot'l_'(_) a_dminister r(_)bot a_ssi_sted ther-

' apies a mobile rehabilitation robot with unlimited planar
workspace, ASISTON-MOBILE [22] is used. ASISTON-
MoBILE is an active holonomic mobile platform based
multi-DoF series elastic actuator designed to administer
therapeutic table-top exercises to patients. In particula
ASsSISTON-MOBILE consists of a 3 DoF planar, compli-
ant parallel mechanism coupled to a Mecanum-wheeled
mobile platform to result in a multi-DoF series-elastic
actuator.

Contour Following Tasks and Passive Velocity Field Con-
troller: Contour following tasks are selected as the thera-
peutic exercises. These tasks are favorable as rehabititat
exercises, since the task and the speed of the task can be
decoupled from each other. This way, coordination and

The main contribution of this paper is a systematic ap-
proach that enables online modification/adaptation of robo
assisted rehabilitation exercises by continuously maoinito
intention of patients utilizing EEG-based BCI. In the prepd
approach, the LDA algorithm is used to classify ERD/ERS
patterns of EEG signals as “move” or “rest”, but instead
of using this binary classification as the output to the robot
controller, the posterior probabilities extracted frone thDA
classifier are directly used as the continuous-valued asitipu iii.
control the rehabilitation robot. Therapeutic tasks atected
as contour tracking exercises where coordination and sgach
nization between various degrees of freedom are emphasized
while timing along the path is left to the patient. Passive
velocity field control (PVFC) is used as the underlying robot  synchronization between various degrees of freedom can
controller, since PVFC not only allows decoupling of thektas be emphasized, while exact timing along the path is left
and the speed of the task from each other, but also does so to the preference of the patient. As a contour following
by rendering the closed loop system passive with respect to controller, PVFC is used, since this controller can ensure

externally applied forces, ensuring coupled stability bé t
overall robot patient system. In particular, continuoassed
outputs of the BCI system that correspond to the instantasmeo

levels of motor imagery during the movement guide the

speed of the contour following task by directly adjusting th

speed regulation parameter in PVFC. With increased level

coupled stability of the overall system throughout the
therapy, while also providing a systematic way to modify
task parameters such as task speed, difficulty, and amount
of assistance [21]. During BCI integration, PVFC enables
intention level of patients to be synchronized to the speed
of ASSISTON-MOBILE.



iv. Visual Feedback ModuleVisual feedback is provided to
patients during training and during therapy sessions to
help them visualize the desired contour and their current
location with respect to this contour. The visual feedback
can be projected on the table to superimpose the desired
task on the physical system.

1. BRAIN-COMPUTER INTERACTION

BCI generates commands by measuring the brain signalg
There exist two methods of measuring the brain activity: th ) : ) )
invasive method in which the electrodes are placed under t%EG alpha (8Hz-13Hz), sigma (14Hz-18Hz) and beta (18Hz

b b ical i d th : . thod i 0Hz) frequency bands related to the preparation of the im-
scalp by surgical operation, an € non-invasivé metno "glgery movements [23]. To analyze these frequency bands Shor

which the electrodes are placed on a headcap which is WOl " oy rier Transform is applied to each trial. The agfivit
by the subject and the brain signals are measured externallg

. X . ) f the brain can be observed after the cue is shown. Hence,
Although the invasive method results in more accurate sgna

the non-invasive method is obviously more practical anérsaf instead of analyzing frequency bands of the entire signal, a
for the patients. EEG is one of the non-invasive methods Iwhictlmlng window is used. Afterwards, the average power spéctr

measures electrical activity of the brain. Although EEG is densities of the3 selected frequency bands are calculated

. thod. it | v f d for BCI licati nd selected as features. TherefGrelifferent spectral power
noisy method, 1t Is commonly favored for applications, yensities are calculated far different electrodes resulting in
thanks to its portability, ease of use and low-cost. Give

. . ; . .a 9-dimensional feature vector.
EEG signals measured in experiments designed to emphasize

sensorimotor rhythms occurring in a correlated fashiorhwit  2) Classification: A classification problem which contains
the users intent, the goal is to process these signals andl classes (right arm imagery movement and rest period), is
automatically recognize underlying patterns. ERD/ERS- patbuilt and LDA which separates classes by using hyperplases,
terns [23], [24] can be observed to identify motor imageryused as a classifier. The assumption made for the trainireg dat
movements where ERD is related to imagination of the motois, its 2 classes have multivariate normal density distitins.
tasks and ERS is related to the passive state. Recognizinigaining set classes are modelled to have the same covarianc
these patterns of sensorimotor rhythms gives the oppaytuni matrix but different mean vectors. These are estimated from
to control cue-based synchronous or self-paced asyncusonothe training data as shown in Egns. (1) and (2).

BCI systems.
Y . i . A Zi\]:l Mikxi (1)
In the literature, linear and non linear methods have Pk = SN M
been proposed to classify motor imagery movements using i=1 ik
ERD/ERS patterns as features [25]. Linear methods are com- - SN S Mgy — ) (i — )T

ig. 1. Positions of the electrodes used in our experiments.

monly preferred, since they are generally more robust due to Yy = N —2 (2)
their lower complexity, stationarity structure, and catesncy
against overfitting [26]. Two main kinds of linear classifier If a samplex; belongs to class k, the value af;;, is 1,

have been used in BCI research, namely, LDA and suppoutherwise it is0. A testing sample is classified by minimizing
vector machines (SVM), which result in similar performasice the expected cost value as shown in Egn. (3).
Consequently, in this work, LDA which is a fast, stationary 5

classification method that is known to produce good results i . .

motor imagery based BCls [27]-[30], is used to classify moto Y= argmming=12 Z P(klz)C(ylk), 3)

imagery movements using ERD/ERS patterns. ) ] kil_ )
where C' is the cost functiony is the assigned class of the
A. Data Collection sample and k is its true class. If a testing sample is cladsifie

falsely, then the cost function is equalitpotherwise it is equal
For EEG recordings, a Biosemi ActiveTwo EEG Systemto 0. This cost function results in the maximum a posteriori
is used. The recording configuration shown in Figure 1 use§MAP) decision rule, hence each sample is assigned to the
Ag-Cl electrodes aCs, C., Cy locations of the international class providing the maximum posterior probability for that
10-20 electrode placement system,5a2 Hz sampling rate. sample.
Their anterior and posterior channels are used as refesence . . e
By subtracting the average of the data received from upper an The binaryy output of the classifier is used to calculate the

lower neighbor channels of a main channel, three referencedfcuracy of the_ training data obtamepl using the BCI oﬁlme_
main channels are obtained. sessions explained in the next session, where the posterior

probability values are calculated using Eqns. (4) and (8, a
Once the EEG data are collected, they are analyzed assed as continuous-valued outputs and used to control the
described below. In this work, we collect and analyze the datvelocity of the robot.
from healthy subjects as they imagine right arm movements.

1 1 _
5 Dot Analei Plalt)= Gerrzenn (—5@ ) - MT) @
Paft) P(k)

1) Feature Extraction:ERD and ERS are mainly charac- P(k|z) =
terized by the help of spectral powers computed in the typica P(z)

()



C. Offline Session posterior probabilities have an increasing effect on threedmpf

For the training of the BCI system, subjects first undergothe robot. Moreover, to have smooth movements at the robotic

based h i ) in which th for &M the mean of the posterior probabilities in the temporal
cue-based Synchronous OfHiNe Sessions in Which they perior, ., qq js calculated and fed to the input of the robotic syste
imaginary movements and the system tries to recognize pal;

terns from their EEG signals. While subjects sit quietlyidgr 3-second window is shifted along the data and the classifier

data collection, without visible arm movements, their task produces a posterior probability output for every secoridgus

. S . ) the model built in the offline session.
to relax or imagine right arm movements. A trial consists of a

passive period followed by a cue period. At the beginning of
trial, a cross '+’ is displayed fo8 seconds which indicates
a rest period and then an acoustic stimulus indicates th
beginning of a cue. Then, a right arrow or ‘Relax’ text apgear
as a cue for6 seconds. Therefore, the length of a trialdis
seconds as shown in Figure 2. The right arrow cue indicatesig. 4. Interface used for the online sessions
right imaginary arm movements and the ‘Relax’ cue orders

the subject to relax (see Figure 3). The order of the cues is
random and an experiment consistssofuns with 40 trials IV. REHABILITATION ROBOT: AssISTON-MOBILE

(20 trials for imagery right movement aritd) trials for rest). ASSISTON-MOBILE, a 3 DoF series elastic actuator, is

used for assisting patients while completing therapeatibet
top exercises. 8sISTON-MOBILE consists of a 3-DoF planar,
compliant parallel mechanism coupled to an omni-direetion
+ =) [/ RELAX Mecanum-wheeled mobile platform. The deliberate intreduc
tion of a multi-DoF compliant element between the mobile
v multi-DoF actuation unit and the patient transforms the-non
Period with Cue backdriveable active holonomic platform into a multi-DoF
series elastic actuator. Utilization of series elasticuatibn
not only eliminates the need for costly force sensors, but

also enables implementation of closed loop force contrth wi
+ RELAX highe_r controller gains, prpviding robustne_ss againseirfgc- _

tions in the power transmission and allowing lower cost @riv

components to be utilized. Consequenth g ASTON-MOBILE

Acoustic Stimulus

0 1 2 3 4 5 6 7 8

L

—o

Fig. 2. Timing scheme

Fig. 3. Interface used for the offline sessions is a low-cost active rehabilitation device with an unlindite
The performance of the classifier is measured by applyinglanar workspace.
two-fold cross validation for300 times to obtain different In addition to administering active, passive, and resis-

training and test datasets consisting of #i€t and the25% e therapeutic exercises,s81STON-MOBILE can assist-as-
of the entire data, respectively. Overall classificatioouacy needed [21], that is, it can interactively adjust the amafnt
is obtained by averaging over thes@) classification experi-  5ssistance, to help increase the training efficiency byrérgu
ments.9 hgalthy subjects participated in the offline sessionsggtive participation of patients. #51STON-MOBILE can also
Classification accuracy values vary betweet¥ and 63%  easily be integrated with BCI using PVFC as detailed in the

across the_ subjects. The results show that the performanggy:'section. A picture of ASISTON-MOBILE is presented in
of motor imagery movement based BCIs, depend on th‘F:igure 5.

subject, his/her fatigue level and concentration. Thellefe
accuracy we obtain is comparable to results reported in the
BCI literature.

D. Online Session

During online session, right arm imagery movements and
the posterior probabilities assigned to right arm imageoyen
ment class are considered to control the velocity of the ttobo
The online session is a self-paced asynchronous system. The
task of the subject is to move a green ball, shown in Figure 4,
by means of imagery right arm movements. As it is known
that the true class is always right arm imagery movemeny, onl
true positive (TP) and false negative (FN) right arm imagery
movements are analyzed. Therefore, if data are classified &g 5 A prototype of AsisTON-MoBILE
a rest period, than it is a FN decision and the value of the
posterior probability assigned to right arm imagery moveme V. INTEGRATION oF BCl WITH ASSISTON-MOBILE
class is equal or less tharb where for TP decisions it is equal ’
or greater thar.5. For that reason, FN posterior probabilities  Contour following tasks are preferable in rehabilitation,
assigned to right arm imagery movement class, are used afce these exercises emphasize coordination and synzfron
a decreasing effect where TP right arm imagery movemention between various DoF during therapeutic exerciseslewhi




allowing patients to take control of exact timing along the VI. EXPERIMENTS
path. Trajectory following controllers cannot guarantbatt
patients are always on the pre-determined path due to tied rad
reduction phenomena [31], [32]. Hence, we utilize PVFC to
administer contour following tasks.

We have performed a feasibility study with a healthy
subject for a single session in order to validate the applica
bility of the proposed control scheme. The experimentalfset
consists of a Biosemi ActiveTwo EEG System angsASTON-

Employment of PVFC is advantageous in rehabilitationMoBILE robot as shown in Figure 6. PVFC is implemented
exercises, since with this controller in place, the task ¢ned in real-time with a sampling frequency 60 Hz through a
speed of the task can be decoupled from each other. Consgesktop computer equipped with a PCI I/O card.
quently, patients can be allowed to proceed with their prete
pace, while assistance can still be provided as determiged b
the therapist. In PVFC, the task is embedded in a predefined
velocity field, while the speed of the task depends on the
instantaneous energy of the closed loop system. In paaticul
PVFC mimics the dynamics of a flywheel; therefore, it cannot
generate energy, but can only store and release the energ)
supplied to it. As a result, the controller renders the adele®p
system passivavith respect to externally applied forcehis
is one of the unique features of PVFC, as classical passivity
based robot control laws [33]—-[35] cannot guarantee pagsiv
when external forces (other than joint motor torques) are co
sidered as the input. Passivity with respect to externakfors
crucial in human-machine interaction, since it enhancéstysa
by limiting the amount of energy that can be released to the [
operator, especially in case of an unexpected systemdailur *

. _Fig. 6. Experimental setup consisting of the Biosemi Adiive EEG
Let the dynamics of a planar robot system expressed ifheasurement device andsaiSTON-MOBILE

joint space be given as
. . The experiment starts by introducing EEG-based BCI
M(q)j+C(q,4)q =7+ e (6) system to volunteers using the test algorithms detailed in

where M(q) and C(q,q) are inertia and Coriolis matrices, Secthn M. _OncleT the subjeqt_ is ready, thg flrst_phasg of the
while 7 and, are control and external torques applied to the®XPerimentis initiated to familiarize the subject with theine
system, respectively. PVFC guarantees passivity of thesys modification of _the _sp_eed of the contour following task. listh
with respect to the supply rate(r.,q) = 77¢; therefore, phase, the_ subject is m_structe.d to contr@dsASTON-M OBILE
external forces satisfy the following passivity condition via motor imagery of his/her right arm movements tracing the
contour, without causing any actual movement with the arms.
b dr > 2 7 At this phase, there is no physical interaction with the tobo
/0 Te @07 = =€ (M) but the subject is placed in front of $5I1STON-MOBILE SO

. that he/she can observe the result of the intended movement.
wherec is a real number.

_ ) In the second phase, the subject is attached4eI14TON-
In PVFC, the pace of the task is determined by the total; o g and asked not to make any voluntary arm movements,
energy present in the system. This energy is due to thelinitigyhjje he/she controls the robot via motor imagery of his/her

conditions and the work done by the external forces, that isjight arm movements tracing the contour using the proposed
the energy provided/subtracted by the patient and disao®a ¢qniro| framework. In order to avoid sudden variations ia th

forces acting on the system. However, the speed of the contodsnoyr tracking speed, instantaneous signals provideitidy
following task can also be controlled by regulating the ltota g ¢jassifier at each second are averaged over 3 seconds usin

energy of the system by the actuators through an exogenousyq\ing window for a smoother therapy experience.
control term appended to the original PVFC controller. This

extra control term features a speed coefficierthat allows This phase of the experiment starts withs#{STON-
easy modification of the task speed. The reader is referred OBILE in idle condition and the user is instructed to imagine
to [36]-[38] for theory and implementation details of PVFC. moving his/her right arm to follow the desired contour, whic
is taken as a straight line for simplicity. With increasedele
bf intention, a higher speed to complete the task is supppied
the patient providing positive feedback to encourage thigeac
articipation of the patient. Once the contour is traversed

For BCI experiments, to enable online adaptation of robo
assisted rehabilitation exercises with the intention oé th
patients, the posterior probabilities extracted from tHeAL

classifier are used as the continuous-valued outputs to PVFG .\ g direction, motion of the device is deliberatelypsied

These outputs correspond to the instantaneous levels @rmotyq the subject is instructed to rest for a few seconds. Then,
imagery during the movement, and are used to guide the spegl. ontour is traversed backwards.

of the contour following task by directly adjusting the sgee

coefficientr in PVFC. With increased level of “intention”, a The subject whose offline session data fiath averaged
higher speed to complete the task is supplied to the patierassification accuracy, participated in the experimerdliring
providing feedback to encourage active participation @& th control of AssISTON-MOBILE. Figure 7 depicts a sample plot
patient. for the kinetic energy of the system, as well as the windowed



1 Move Forward Move Backwards 25

Move Forward Move Backwards

|_Rest |

Probability in a Moving Window
o
o

05

External Force Applied at End—effector

0 10 20 30 40 50 60 70 80 0 U
time [s] 0 oo 30 Ry
5 Fig. 8. Force Readings during the Exercise

35 X 10 Move Forward Move Backwards

50 60 70 80

accuracy of the classification and accuracy levels weredoun
to be in line with the state-of-the-art. Afterwards, for thedf-

— 25
2 paced asynchronous online sessions, the subjects werd aske
> 2 to only imagine right arm movements. Instead of using binary
€ 15 classification output, the implicative probabilities ofantion
- ; extracted from the LDA classifier were directly used as the
continuous-valued outputs to control the speed regulatifon
05 contour tracking tasks, so that patients actively paritdpn

‘ ‘ / ‘ ‘ therapies. The control scheme was successfully implerdente
0 10 20 30 40 50 60 70 80 on a holonomic mobile platform, #sISTON-MOBILE, where
time [s] . . . .

the pace of contour tracking was increased with increased
Fig. 7. (a) Moving window averaged probability of patienteintion and (b)  intention level classified by BCI. Feasibility studies with
kinetic energy of the augmented system healthy subjects have been completed, where subjects were

asked to imagine the movement with no arm movement and

probability values provided to PVFC at each second througho with arm movement assisted bysAISTON-MOBILE. Since
the exercise. As detailed in Section IV, PVFC can regulatéhese experiments were primarily designed for patienté wit
the speed of the contour tracking task by providing/exinact little to no motion capability, increased intention to mahe
energy to/from the system through its control parameter#jured limb was rewarded by faster task execution. On the
depending on the intention level of subjects. Therefomeglic  contrary, lower intention levels were penalized by slowing
energy of the overall system presented in Figure 7(a) istjre down the movement and halting it at the worst case. The
proportional to the tracking speed in the given desiredaiglo  proposed framework with contour tracking exercises has bee
field [39]. Comparing Figure 7(a) and (b), it can be observedshown to enable seamless on-line modification of task speed
that PVFC can successfully administer the contour follgwin without endangering the safety of the patient, especially d
task at the speed levels dictated by the BCI signals. to externally applied forces.

Figure 8 presents the magnitude of the resultant interactio ~ Future work includes the comparison of the instantaneous
forces between the subject ands#STON-MOBILE during intention levels of motor imagery during the movement be-
the same trial. During a large portion of the exercise, stbje tween the posterior probabilities obtained from the EEGdat
applies no apparent external forces, while some uninteatio and electromyography (EMG) signals. Moreover, a larger
movements can be observed at several instances. Note ttg@@ale experiment with healthy volunteers and clinicalldria
residual movements, such as involuntary contractionsatsmn ~ With stroke patients are planned to further test efficacy and
be applied by patients on the device. Thanks to inherergffectiveness of the proposed approach.
passivity of our contour tracking controller with respeot t
external forces, the coupled human-robot system staysvpass VIIl. A CKNOWLEDGMENT
and faithfully tracks the desired contour even under such
forces.
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