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Email: {minesarac,elakoyas,ahmetcan,mcetin,vpatoglu}@sabanciuniv.edu

Abstract—We present a systematic approach that enables
online modification/adaptation of robot assisted rehabilitation
exercises by continuously monitoring intention levels of patients
utilizing an electroencephalogram (EEG) based Brain-Computer
Interface (BCI). In particular, we use Linear Discriminant
Analysis (LDA) to classify event-related synchronization (ERS)
and desynchronization (ERD) patterns associated with motor
imagery; however, instead of providing a binary classification
output, we utilize posterior probabilities extracted from LDA
classifier as the continuous-valued outputs to control a rehabil-
itation robot. Passive velocity field control (PVFC) is used as
the underlying robot controller to map instantaneous levels of
motor imagery during the movement to the speed of contour
following tasks. In other words, PVFC changes the speed of
contour following tasks with respect to intention levels of motor
imagery. PVFC also allows decoupling of the task and the speed
of the task from each other, and ensures coupled stability of
the overall robot patient system. The proposed framework is
implemented on ASSISTON-MOBILE—a series elastic actuator
based on a holonomic mobile platform, and feasibility studies with
healthy volunteers have been conducted test effectiveness of the
proposed approach. Giving patients online control over the speed
of the task, the proposed approach ensures active involvement of
patients throughout exercise routines and has the potential to
increase the efficacy of robot assisted therapies.

I. INTRODUCTION

In recent years, design methodologies for rehabilitation
robots have matured and robotic systems for rehabilitation
have become ubiquitous. Clinical trials investigating efficacy
of robotic rehabilitation provide evidence that robotic therapy
is effective for motor recovery and possesses high potential
for improving functional independence of patients [1]–[4].
However, to further increase efficacy of robot assisted ther-
apies, there is still a pressing need for evidence based therapy
protocols and novel systematic approaches to safely deliver
these therapies. In this paper, we focus on Brain Computer
Interfaces (BCI) in robot assisted neurological rehabilitation
and propose a systematic framework to integrate BCI with
rehabilitation robots such that active participation of patients,
especially patients with severe motor disabilities, in the therapy
session is assured.

Since active participation of patients in therapies is known
to be crucial for motor recovery, state-of-art rehabilitation
robots regulate the physical interaction between the patient and
the device. These systems require patients to do positive work
on the system such that movement exercises can be completed.
These control techniques are commonly extended with “assist-
as-needed” protocols to provide minimal assistance to the
patient, since redundant amount of assistance is shown to be
detrimental for recovery, while proper amount of assistance is
necessary to ensure safety and progress.

Even though active rehabilitation devices can impose
forces/movements to patients with all levels of impairment, it
is not trivial to extend adaptive assistance protocols to patients
with severe disabilities. In particular, severe motor disability
of these patients preclude their voluntary muscle control and
physical contribution to the task, on which most of the current
“assist-as-needed” protocols depend. Bypassing the impaired
neuromuscular system and enabling monitoring of the current
state of brain activity, BCI technology promises an alternative
pathway to guide rehabilitation protocols to effectively induce
activity-dependent brain plasticity and to restore neuromuscu-
lar function. In the literature, it has been shown that stroke
patients are capable of operating a motor imagery based BCI
system as efficiently as healthy subjects [5].

Recently, there has been much interest in developing
BCI technology to help restore function for patients with
severe motor disabilities [6]–[8], including patients with severe
trauma due to stroke, cerebral palsy, or injury to spinal cord
or brain. These studies commonly rely on non-invasive elec-
troencephalogram (EEG) signals, since collecting these electric
potentials is more practical, less expensive, and safer for the
patients, compared to invasive techniques.

Rehabilitation therapy using EEG-based BCI systems can
be loosely categorized into two: systems that only represent
movements corresponding to motor imagery, typically in a
virtual reality (VR) environment, and systems that physically
interact with the patient to impose movement therapies corre-
sponding to the motor imagery. Belonging to the first category,
in [9]–[11] mental imagery experiments have been conducted
on healthy subjects and/or stroke patients. The subjects are
asked to imagine a movement while observing corresponding
visual feedback in a VR environment. These feasibility studies
show that stroke patients can control virtual movements with
a BCI system as well as healthy subjects. In [12], [13] mental
imagery experiments have been completed on healthy subjects
by providing visual feedback through a physical robotic device
instead of a VR environment. In these experiments, subjects
control the movements of a robotic arm without having any
physical contact with the device. In [12], it is shown that
visualization of the physical robot improves the accuracy of
the final decision about the task, while [13] presents feasibility
of different control architectures.

In the second category, rehabilitation robots are integrated
with BCI to impose necessary therapeutic exercises. For in-
stance, [14]–[16] conduct experiments on healthy subjects
and/or stroke patients asking them to imagine moving their
arms and use EEG classifications obtained from ERD/ERS
patterns to trigger the movement of a rehabilitation robot.
In [14], ERD/ERS patterns are classified as “move” and “rest”
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using Naive Bayes Parzen Window to trigger reaching move-
ments with MIT-Manus robot. In [15], CSP filter classifies
“move” and “rest” commands to trigger reaching tasks with
Light-Exos. In this study, trajectories are generated withan
online method to desired targets that the subjects can choose
using an eye-tracking system. In [16], Filter Bank Common
Spatial Pattern algorithm classifies “go” and “rest” commands
to trigger MIT-Manus for reaching tasks. Studies [17] and [18]
present clinical studies for the BCI integrated rehabilitation
system in [16]. These studies demonstrate feasibility of BCI
integrated rehabilitation robotics. Moreover, results indicate a
better classification accuracy for mental imagery with haptic
feedback when compared with providing only visual feedback.

However, in all of these BCI integrated rehabilitation robot
systems, patients’ intentions have only been used to initiate
and stop the movement therapy. With these approaches, once
the movement is triggered, the patient may stop focusing on
the movement until the next task. Besides, after a thresholdis
overcome, the resulting movement is always the same, invari-
ant of the amount of effort the patients put in to imagine the
movement. As a result, these systems cannot ensure active par-
ticipation of patients in the movement therapy. Recently, [19]
advocates the importance of real-time adaptation of movement
therapies to correspond with the patients’ intention captured
by EEG-based BCI. Even though this study provides initial
feasibility studies showing two stroke patients controlling a
Barrett WAM robot attached to their impaired arm, the real-
time adaptation of therapies based on BCI classification has
been left as a part of their future work. Similarly, in [20]
intentions of the subjects are decoded every 300 ms and the
state of the robot is updated either in a passive mode where the
subjects are instructed to attempt a real/imaginary movement,
or in an active mode where the subjects’ movements are guided
by the device. Updating the robot state every 300 ms en-
ables the system to be synchronized with subjects’ intentions.
Welch’s method has been used to compute estimates for the
power spectral density to classify the user’s intention as “go”
or “rest”.

The main contribution of this paper is a systematic ap-
proach that enables online modification/adaptation of robot
assisted rehabilitation exercises by continuously monitoring
intention of patients utilizing EEG-based BCI. In the proposed
approach, the LDA algorithm is used to classify ERD/ERS
patterns of EEG signals as “move” or “rest”, but instead
of using this binary classification as the output to the robot
controller, the posterior probabilities extracted from the LDA
classifier are directly used as the continuous-valued outputs to
control the rehabilitation robot. Therapeutic tasks are selected
as contour tracking exercises where coordination and synchro-
nization between various degrees of freedom are emphasized,
while timing along the path is left to the patient. Passive
velocity field control (PVFC) is used as the underlying robot
controller, since PVFC not only allows decoupling of the task
and the speed of the task from each other, but also does so
by rendering the closed loop system passive with respect to
externally applied forces, ensuring coupled stability of the
overall robot patient system. In particular, continuous-valued
outputs of the BCI system that correspond to the instantaneous
levels of motor imagery during the movement guide the
speed of the contour following task by directly adjusting the
speed regulation parameter in PVFC. With increased level

of “intention” (as reflected in the posterior probabilitiesof
the classifier), PVFC increases the speed of the robot which
provides useful feedback to the subjects to encourage active
participation to complete the task. In addition to the speedof
the task, our approach also allows for on-line modification of
the task difficulty and the level of assistance as determined
by the therapist [21]. Giving patients online control over the
speed of the task, the proposed framework ensures active
involvement of patients throughout the exercises and has the
potential to increase the efficacy of robot assisted therapies.
Our overall control architecture is implemented on a multi-
DoF series elastic actuator, ASSISTON-MOBILE, developed
for administering therapeutic table-top exercises to patients.

The paper is organized as follows. Section II introduces
the main components that constitute the proposed BCI-based
rehabilitation system. Section III describes the BCI component
and provides details of offline, online sessions, and data
analysis operations. Section IV reviews the rehabilitation robot,
ASSISTON-MOBILE, used in our experiments, while Section V
discusses utilization of PVFC to integrate BCI with robot
assisted rehabilitation therapies. Section VI provides feasibility
studies and experimental results. Finally, Section VII concludes
the paper and discusses future work.

II. BCI-BASED ROBOTIC REHABILITATION SYSTEM
The proposed BCI-based robot assisted rehabilitation sys-

tem consists of:

i. Real-Time BCI System: For real-time, continual processing
of patient intention, a Biosemi ActiveTwo EEG System is
used to measure the electrical activity of the brain. The
LDA algorithm is used to classify ERD/ERS patterns in
EEG signals as “move” or “rest’. Instead of using the
binary classification outputs, the posterior probabilities
extracted from the LDA classifier are directly used as
the continuous-valued outputs, to control the speed of the
therapeutic movements performed by the robotic system.

ii. Rehabilitation Robot: To administer robot assisted ther-
apies a mobile rehabilitation robot with unlimited planar
workspace, ASSISTON-MOBILE [22] is used. ASSISTON-
MOBILE is an active holonomic mobile platform based
multi-DoF series elastic actuator designed to administer
therapeutic table-top exercises to patients. In particular,
ASSISTON-MOBILE consists of a 3 DoF planar, compli-
ant parallel mechanism coupled to a Mecanum-wheeled
mobile platform to result in a multi-DoF series-elastic
actuator.

iii. Contour Following Tasks and Passive Velocity Field Con-
troller: Contour following tasks are selected as the thera-
peutic exercises. These tasks are favorable as rehabilitation
exercises, since the task and the speed of the task can be
decoupled from each other. This way, coordination and
synchronization between various degrees of freedom can
be emphasized, while exact timing along the path is left
to the preference of the patient. As a contour following
controller, PVFC is used, since this controller can ensure
coupled stability of the overall system throughout the
therapy, while also providing a systematic way to modify
task parameters such as task speed, difficulty, and amount
of assistance [21]. During BCI integration, PVFC enables
intention level of patients to be synchronized to the speed
of ASSISTON-MOBILE.



iv. Visual Feedback Module: Visual feedback is provided to
patients during training and during therapy sessions to
help them visualize the desired contour and their current
location with respect to this contour. The visual feedback
can be projected on the table to superimpose the desired
task on the physical system.

III. BRAIN-COMPUTER INTERACTION

BCI generates commands by measuring the brain signals.
There exist two methods of measuring the brain activity: the
invasive method in which the electrodes are placed under the
scalp by surgical operation, and the non-invasive method in
which the electrodes are placed on a headcap which is worn
by the subject and the brain signals are measured externally.
Although the invasive method results in more accurate signals,
the non-invasive method is obviously more practical and safer
for the patients. EEG is one of the non-invasive methods which
measures electrical activity of the brain. Although EEG is a
noisy method, it is commonly favored for BCI applications,
thanks to its portability, ease of use and low-cost. Given
EEG signals measured in experiments designed to emphasize
sensorimotor rhythms occurring in a correlated fashion with
the user’s intent, the goal is to process these signals and
automatically recognize underlying patterns. ERD/ERS pat-
terns [23], [24] can be observed to identify motor imagery
movements where ERD is related to imagination of the motor
tasks and ERS is related to the passive state. Recognizing
these patterns of sensorimotor rhythms gives the opportunity
to control cue-based synchronous or self-paced asynchronous
BCI systems.

In the literature, linear and non linear methods have
been proposed to classify motor imagery movements using
ERD/ERS patterns as features [25]. Linear methods are com-
monly preferred, since they are generally more robust due to
their lower complexity, stationarity structure, and consistency
against overfitting [26]. Two main kinds of linear classifiers
have been used in BCI research, namely, LDA and support
vector machines (SVM), which result in similar performances.
Consequently, in this work, LDA which is a fast, stationary
classification method that is known to produce good results in
motor imagery based BCIs [27]–[30], is used to classify motor
imagery movements using ERD/ERS patterns.

A. Data Collection

For EEG recordings, a Biosemi ActiveTwo EEG System
is used. The recording configuration shown in Figure 1 uses
Ag-Cl electrodes atC3, Cz , C4 locations of the international
10-20 electrode placement system, at512 Hz sampling rate.
Their anterior and posterior channels are used as references.
By subtracting the average of the data received from upper and
lower neighbor channels of a main channel, three referenced
main channels are obtained.

Once the EEG data are collected, they are analyzed as
described below. In this work, we collect and analyze the data
from healthy subjects as they imagine right arm movements.

B. Data Analysis

1) Feature Extraction:ERD and ERS are mainly charac-
terized by the help of spectral powers computed in the typical

Fig. 1. Positions of the electrodes used in our experiments.

EEG alpha (8Hz-13Hz), sigma (14Hz-18Hz) and beta (18Hz-
30Hz) frequency bands related to the preparation of the im-
agery movements [23]. To analyze these frequency bands Short
Time Fourier Transform is applied to each trial. The activity
of the brain can be observed after the cue is shown. Hence,
instead of analyzing frequency bands of the entire signal, a
timing window is used. Afterwards, the average power spectral
densities of the3 selected frequency bands are calculated
and selected as features. Therefore,3 different spectral power
densities are calculated for3 different electrodes resulting in
a 9-dimensional feature vector.

2) Classification:A classification problem which contains
2 classes (right arm imagery movement and rest period), is
built and LDA which separates classes by using hyperplanes,is
used as a classifier. The assumption made for the training data
is, its 2 classes have multivariate normal density distributions.
Training set classes are modelled to have the same covariance
matrix but different mean vectors. These are estimated from
the training data as shown in Eqns. (1) and (2).

µ̂k =

∑N
i=1

Mikxi
∑N

i=1
Mik

(1)

Σ̂k =

∑N
i=1

∑

2

k=1
Mik(xi − µ̂k)(xi − µ̂k)

T

N − 2
(2)

If a samplexi belongs to class k, the value ofMik is 1,
otherwise it is0. A testing sample is classified by minimizing
the expected cost value as shown in Eqn. (3).

ŷ = argminy=1,2

2
∑

k=1

P (k|x)C(y|k), (3)

whereC is the cost function,̂y is the assigned class of the
sample and k is its true class. If a testing sample is classified
falsely, then the cost function is equal to1, otherwise it is equal
to 0. This cost function results in the maximum a posteriori
(MAP) decision rule, hence each sample is assigned to the
class providing the maximum posterior probability for that
sample.

The binaryŷ output of the classifier is used to calculate the
accuracy of the training data obtained using the BCI offline
sessions explained in the next session, where the posterior
probability values are calculated using Eqns. (4) and (5), are
used as continuous-valued outputs and used to control the
velocity of the robot.
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exp

(

−
1

2
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−1

k (x− µk)
T

)
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P (k|x) =
P (x|k)P (k)

P (x)
(5)



C. Offline Session

For the training of the BCI system, subjects first undergo
cue-based synchronous offline sessions in which they perform
imaginary movements and the system tries to recognize pat-
terns from their EEG signals. While subjects sit quietly during
data collection, without visible arm movements, their taskis
to relax or imagine right arm movements. A trial consists of a
passive period followed by a cue period. At the beginning of a
trial, a cross ‘+’ is displayed for3 seconds which indicates
a rest period and then an acoustic stimulus indicates the
beginning of a cue. Then, a right arrow or ‘Relax’ text appears
as a cue for6 seconds. Therefore, the length of a trial is9
seconds as shown in Figure 2. The right arrow cue indicates
right imaginary arm movements and the ‘Relax’ cue orders
the subject to relax (see Figure 3). The order of the cues is
random and an experiment consists of5 runs with 40 trials
(20 trials for imagery right movement and20 trials for rest).

Period with Cue

0 1 2 3 4 5 6 7 8 9

Fig. 2. Timing scheme

Fig. 3. Interface used for the offline sessions

The performance of the classifier is measured by applying
two-fold cross validation for300 times to obtain different
training and test datasets consisting of the75% and the25%
of the entire data, respectively. Overall classification accuracy
is obtained by averaging over these300 classification experi-
ments.9 healthy subjects participated in the offline sessions.
Classification accuracy values vary between84% and 63%
across the subjects. The results show that the performance
of motor imagery movement based BCIs, depend on the
subject, his/her fatigue level and concentration. The level of
accuracy we obtain is comparable to results reported in the
BCI literature.

D. Online Session

During online session, right arm imagery movements and
the posterior probabilities assigned to right arm imagery move-
ment class are considered to control the velocity of the robot.
The online session is a self-paced asynchronous system. The
task of the subject is to move a green ball, shown in Figure 4,
by means of imagery right arm movements. As it is known
that the true class is always right arm imagery movement, only
true positive (TP) and false negative (FN) right arm imagery
movements are analyzed. Therefore, if data are classified as
a rest period, than it is a FN decision and the value of the
posterior probability assigned to right arm imagery movement
class is equal or less than0.5 where for TP decisions it is equal
or greater than0.5. For that reason, FN posterior probabilities
assigned to right arm imagery movement class, are used as
a decreasing effect where TP right arm imagery movement

posterior probabilities have an increasing effect on the speed of
the robot. Moreover, to have smooth movements at the robotic
arm, the mean of the posterior probabilities in the temporal
window is calculated and fed to the input of the robotic system.
A 3-second window is shifted along the data and the classifier
produces a posterior probability output for every second using
the model built in the offline session.

Fig. 4. Interface used for the online sessions

IV. REHABILITATION ROBOT: A SSISTON-MOBILE

ASSISTON-MOBILE, a 3 DoF series elastic actuator, is
used for assisting patients while completing therapeutic table-
top exercises. ASSISTON-MOBILE consists of a 3-DoF planar,
compliant parallel mechanism coupled to an omni-directional
Mecanum-wheeled mobile platform. The deliberate introduc-
tion of a multi-DoF compliant element between the mobile
multi-DoF actuation unit and the patient transforms the non-
backdriveable active holonomic platform into a multi-DoF
series elastic actuator. Utilization of series elastic actuation
not only eliminates the need for costly force sensors, but
also enables implementation of closed loop force control with
higher controller gains, providing robustness against imperfec-
tions in the power transmission and allowing lower cost drive
components to be utilized. Consequently, ASSISTON-MOBILE
is a low-cost active rehabilitation device with an unlimited
planar workspace.

In addition to administering active, passive, and resis-
tive therapeutic exercises, ASSISTON-MOBILE can assist-as-
needed [21], that is, it can interactively adjust the amountof
assistance, to help increase the training efficiency by ensuring
active participation of patients. ASSISTON-MOBILE can also
easily be integrated with BCI using PVFC as detailed in the
next section. A picture of ASSISTON-MOBILE is presented in
Figure 5.

Fig. 5. A prototype of ASSISTON-MOBILE

V. INTEGRATION OF BCI WITH ASSISTON-MOBILE

Contour following tasks are preferable in rehabilitation,
since these exercises emphasize coordination and synchroniza-
tion between various DoF during therapeutic exercises, while



allowing patients to take control of exact timing along the
path. Trajectory following controllers cannot guarantee that
patients are always on the pre-determined path due to the radial
reduction phenomena [31], [32]. Hence, we utilize PVFC to
administer contour following tasks.

Employment of PVFC is advantageous in rehabilitation
exercises, since with this controller in place, the task andthe
speed of the task can be decoupled from each other. Conse-
quently, patients can be allowed to proceed with their preferred
pace, while assistance can still be provided as determined by
the therapist. In PVFC, the task is embedded in a predefined
velocity field, while the speed of the task depends on the
instantaneous energy of the closed loop system. In particular,
PVFC mimics the dynamics of a flywheel; therefore, it cannot
generate energy, but can only store and release the energy
supplied to it. As a result, the controller renders the closed-loop
system passivewith respect to externally applied forces. This
is one of the unique features of PVFC, as classical passivity-
based robot control laws [33]–[35] cannot guarantee passivity
when external forces (other than joint motor torques) are con-
sidered as the input. Passivity with respect to external forces is
crucial in human-machine interaction, since it enhances safety
by limiting the amount of energy that can be released to the
operator, especially in case of an unexpected system failure.

Let the dynamics of a planar robot system expressed in
joint space be given as

M(q)q̈ + C(q, q̇)q̇ = τ + τe (6)

where M(q) and C(q, q̇) are inertia and Coriolis matrices,
while τ andτe are control and external torques applied to the
system, respectively. PVFC guarantees passivity of the system
with respect to the supply rates(τe, q̇) = τTe q̇; therefore,
external forces satisfy the following passivity condition

∫ t

0

τTe q̇ dτ ≥ −c2 (7)

wherec is a real number.

In PVFC, the pace of the task is determined by the total
energy present in the system. This energy is due to the initial
conditions and the work done by the external forces, that is,
the energy provided/subtracted by the patient and disturbance
forces acting on the system. However, the speed of the contour
following task can also be controlled by regulating the total
energy of the system by the actuators through an exogenous
control term appended to the original PVFC controller. This
extra control term features a speed coefficientr that allows
easy modification of the task speed. The reader is referred
to [36]–[38] for theory and implementation details of PVFC.

For BCI experiments, to enable online adaptation of robot
assisted rehabilitation exercises with the intention of the
patients, the posterior probabilities extracted from the LDA
classifier are used as the continuous-valued outputs to PVFC.
These outputs correspond to the instantaneous levels of motor
imagery during the movement, and are used to guide the speed
of the contour following task by directly adjusting the speed
coefficientr in PVFC. With increased level of “intention”, a
higher speed to complete the task is supplied to the patient
providing feedback to encourage active participation of the
patient.

VI. EXPERIMENTS

We have performed a feasibility study with a healthy
subject for a single session in order to validate the applica-
bility of the proposed control scheme. The experimental setup
consists of a Biosemi ActiveTwo EEG System and ASSISTON-
MOBILE robot as shown in Figure 6. PVFC is implemented
in real-time with a sampling frequency of500 Hz through a
desktop computer equipped with a PCI I/O card.

Fig. 6. Experimental setup consisting of the Biosemi ActiveTwo EEG
measurement device and ASSISTON-MOBILE

The experiment starts by introducing EEG-based BCI
system to volunteers using the test algorithms detailed in
Section III. Once the subject is ready, the first phase of the
experiment is initiated to familiarize the subject with theonline
modification of the speed of the contour following task. In this
phase, the subject is instructed to control ASSISTON-MOBILE
via motor imagery of his/her right arm movements tracing the
contour, without causing any actual movement with the arms.
At this phase, there is no physical interaction with the robot,
but the subject is placed in front of ASSISTON-MOBILE so
that he/she can observe the result of the intended movement.

In the second phase, the subject is attached to ASSISTON-
MOBILE and asked not to make any voluntary arm movements,
while he/she controls the robot via motor imagery of his/her
right arm movements tracing the contour using the proposed
control framework. In order to avoid sudden variations in the
contour tracking speed, instantaneous signals provided bythe
BCI classifier at each second are averaged over 3 seconds using
a moving window for a smoother therapy experience.

This phase of the experiment starts with ASSISTON-
MOBILE in idle condition and the user is instructed to imagine
moving his/her right arm to follow the desired contour, which
is taken as a straight line for simplicity. With increased level
of intention, a higher speed to complete the task is suppliedto
the patient providing positive feedback to encourage the active
participation of the patient. Once the contour is traversedin
forward direction, motion of the device is deliberately stopped
and the subject is instructed to rest for a few seconds. Then,
the contour is traversed backwards.

The subject whose offline session data had72% averaged
classification accuracy, participated in the experiment involving
control of ASSISTON-MOBILE. Figure 7 depicts a sample plot
for the kinetic energy of the system, as well as the windowed
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Fig. 7. (a) Moving window averaged probability of patient intention and (b)
kinetic energy of the augmented system

probability values provided to PVFC at each second throughout
the exercise. As detailed in Section IV, PVFC can regulate
the speed of the contour tracking task by providing/extracting
energy to/from the system through its control parameters
depending on the intention level of subjects. Therefore, kinetic
energy of the overall system presented in Figure 7(a) is directly
proportional to the tracking speed in the given desired velocity
field [39]. Comparing Figure 7(a) and (b), it can be observed
that PVFC can successfully administer the contour following
task at the speed levels dictated by the BCI signals.

Figure 8 presents the magnitude of the resultant interaction
forces between the subject and ASSISTON-MOBILE during
the same trial. During a large portion of the exercise, subject
applies no apparent external forces, while some unintentional
movements can be observed at several instances. Note that
residual movements, such as involuntary contractions, canalso
be applied by patients on the device. Thanks to inherent
passivity of our contour tracking controller with respect to
external forces, the coupled human-robot system stays passive
and faithfully tracks the desired contour even under such
forces.

VII. CONCLUSIONS

In this study, we have proposed and implemented a BCI-
based robotic rehabilitation system that enables online modifi-
cation/adaptation of exercises with the intention of patients.
In our experiments, the subjects first underwent cue-based
synchronous offline sessions and were asked to rest or imagine
to move their right arm, according to the random cues shown
in the BCI system. LDA algorithm was used to classify
ERD/ERS patterns of their EEG signals as “move” or “rest”.
This binary classification output was used to compute the
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accuracy of the classification and accuracy levels were found
to be in line with the state-of-the-art. Afterwards, for theself-
paced asynchronous online sessions, the subjects were asked
to only imagine right arm movements. Instead of using binary
classification output, the implicative probabilities of intention
extracted from the LDA classifier were directly used as the
continuous-valued outputs to control the speed regulationof
contour tracking tasks, so that patients actively participate in
therapies. The control scheme was successfully implemented
on a holonomic mobile platform, ASSISTON-MOBILE, where
the pace of contour tracking was increased with increased
intention level classified by BCI. Feasibility studies with
healthy subjects have been completed, where subjects were
asked to imagine the movement with no arm movement and
with arm movement assisted by ASSISTON-MOBILE. Since
these experiments were primarily designed for patients with
little to no motion capability, increased intention to movethe
injured limb was rewarded by faster task execution. On the
contrary, lower intention levels were penalized by slowing
down the movement and halting it at the worst case. The
proposed framework with contour tracking exercises has been
shown to enable seamless on-line modification of task speed
without endangering the safety of the patient, especially due
to externally applied forces.

Future work includes the comparison of the instantaneous
intention levels of motor imagery during the movement be-
tween the posterior probabilities obtained from the EEG data
and electromyography (EMG) signals. Moreover, a larger
scale experiment with healthy volunteers and clinical trials
with stroke patients are planned to further test efficacy and
effectiveness of the proposed approach.
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